Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040308    DOI: 10.1088/1674-1056/22/4/040308
GENERAL Prev   Next  

Non-Markovian dynamics of two non-coupled qubits interacting with two separate reservoirs with different spectral densities

Wang Xiao-Yun, Ding Bang-Fu, Zhao He-Ping
College of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou 416000, China
Abstract  The dynamics of two non-coupled qubits independently interacting with their reservoirs is solved by the time convolutionless projection operator method. We study two-qubit quantum correlation dynamics for two different types of spectral densities, which are a Lorentzian distribution and an Ohmic spectral density with a Lorentzian-Drude cutoff function. For two qubits initially prepared in the initial Bell state, quantum discord can keep longer time and reach larger values in non-Markovian reservoirs for the first spectral distribution or by reducing the cutoff frequency for the second case. For the initial Bell-like state, the dynamic behaviors of quantum discord and entanglement are compared. The results show that a long time of quantum correlation can be obtained by adjusting some parameters in experiment and further confirm that the discord can capture quantum correlation in addition to entanglement.
Keywords:  Lorentzian and Ohmic spectral densities      the time convolution-less projection operator method      non-Markovian and Markovian regime      quantum discord and entanglement     
Received:  08 June 2012      Published:  01 March 2013
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264011 and 11104113), the Natural Science Foundation of Hunan Province, China (Grant Nos. 09JJ6011 and 11JJ6007), and the Natural Science Foundation of Education Department of Hunan Province, China (Grant No. 11C1057).
Corresponding Authors:  Wang Xiao-Yun, Ding Bang-Fu     E-mail:  wxyyun@163.com; dbf1982@126.com

Cite this article: 

Wang Xiao-Yun, Ding Bang-Fu, Zhao He-Ping Non-Markovian dynamics of two non-coupled qubits interacting with two separate reservoirs with different spectral densities 2013 Chin. Phys. B 22 040308

[1] Nielsen M A and Chuang I I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 52-58
[2] Wu Y and Yang X 1997 Phys. Rev. Lett. 78 3086
[3] Bennett C H, Brassard G and Creoeau C 1993 Phys. Rev. Lett. 70 1895
[4] Hu Y H and Wang J Q 2012 Chin. Phys. B 21 014203
[5] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601
[6] Sintayehu T 2012 Chin. Phys. B 21 014204
[7] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[8] Hao X, Pan T, Sha J Q and Zhu S Q 2011 Commun. Theor. Phys. 55 41
[9] Luo X Q, Wang D L, Zhang Z Q, Ding J W and Liu W M 2011 Phys. Rev. A 84 033803
[10] Fanchini F F, Castelano L K and Caldeira A O 2010 New J. Phys. 12 073009
[11] He J Z, He X and Zheng J 2012 Chin. Phys. B 21 050303
[12] Shu C G, Xin X, Liu Y M, Yu Z Y, Yao W J, Wang D L and Cao G 2012 Chin. Phys. B 21 044208
[13] Wang Y H, Bai B M, Li Z, Peng J Y and Xiao H L 2012 Chin. Phys. B 21 020304
[14] Xu G F and Tong D M 2011 Chin. Phys. Lett. 28 060305
[15] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[16] Dillenschneiider R and Lutz E 2009 Europhys. Lett. 88 50003
[17] Satandy M S 2009 Phys. Rev. A 80 022108
[18] Cui J and Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[19] Werlang T, Sonza S, Fanchin F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[20] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[21] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[22] Bellomo B, Franco L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[23] Bruno B, Rosario L F, Sabrina M and Giuseppe C 2010 Phys. Scr. T140 014014
[24] Ding B F, Wang X Y, Liu J F, Yan L and Zhao H P 2011 Chin. Phys. Lett. 28 104216
[25] Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (Oxford: Oxford University Press)
[26] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
[27] Ding B F, Wang X Y and Zhao H P 2011 Chin. Phys. B 20 100302
[28] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 arXiv: 0906.1796v1
[1] Thermal entanglement in a spin-1/2 Ising-Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[2] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik. Chin. Phys. B, 2020, 29(11): 110301.
[3] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[4] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[5] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[6] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[7] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[8] Monogamy and polygamy relations of multiqubit entanglement based on unified entropy
Zhi-Xiang Jin(靳志祥), Cong-Feng Qiao(乔从丰). Chin. Phys. B, 2020, 29(2): 020305.
[9] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[10] Generalized Hardy-type tests for hierarchy of multipartite non-locality
Fei Yang(杨飞), Yu Yuan(袁毓), Wen-Lu Lin(林文璐), Shu-Ao Liao(廖书傲), Cheng-Jie Zhang(张成杰), Qing Chen(陈清). Chin. Phys. B, 2019, 28(12): 120306.
[11] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[12] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[13] Tetrapartite entanglement measures of W-class in noninertial frames
Ariadna J. Torres-Arenas, Edgar O. López-Zúñiga, J. Antonio Saldaña-Herrera, Qian Dong, Guo-Hua Sun, Shi-Hai Dong. Chin. Phys. B, 2019, 28(7): 070301.
[14] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
[15] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
No Suggested Reading articles found!