Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027504    DOI: 10.1088/1674-1056/22/2/027504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As

Li Yan-Yong, Wang Hua-Feng, Cao Yu-Fei, Wang Kai-You
The State Key Laboratory of Superlattices and Microstructure, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We investigated the effect of low temperature annealing on magnetic anisotropy in 7-nm ultrathin Ga0.94Mn0.06As devices by measuring the angle-dependent planar Hall resistance (PHR). Obvious hysteresis loops were observed during the magnetization reversal through the clockwise and counterclockwise rotations under low magnetic fields (below 1000 Gs, 1 Gs=10-4 T), which can be explained by competition between Zeeman energy and magnetic anisotropic energy. It is found that the uniaxial anisotropy is dominant in the whole measured ferromagnetic range for both the as-grown ultrathin Ga0.94Mn0.06As and the annealed one. The cubic anisotropy changes more than the uniaxial anisotropy in the measured temperature ranges after annealing. This gives a useful way to tune the magnetic anisotropy of ultrathin (Ga,Mn)As devices.
Keywords:  magnetic anisotropy      planar Hall resistance      ultrathin (Ga,Mn)As  
Received:  18 September 2012      Revised:  17 October 2012      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  75.30.Gw (Magnetic anisotropy)  
  75.30.Hx (Magnetic impurity interactions)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922200); the National Natural Science Foundation of China (Grant No. 11174272); and the Engineering and Physical Sciences Research Council-National Natural Science Foundation Joint (Grant Nos. 10911130232/A0402).
Corresponding Authors:  Wang Kai-You     E-mail:  kywang@semi.ac.cn

Cite this article: 

Li Yan-Yong, Wang Hua-Feng, Cao Yu-Fei, Wang Kai-You Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As 2013 Chin. Phys. B 22 027504

[1] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
[2] Matsukura F, Sawicki M, Dietl T, Chiba D and Ohno H 2004 Physica E: Low-dimensional Systems and Nanostructures 21 1032
[3] Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F and Ohno H 2008 Nature 455 515
[4] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P and von Molnaár S 2011 Nano Lett. 11 2584
[5] Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
[6] Lee S, Yoo T, Lee H, Khym S, Liu X and K. Furdyna J 2011 Jpn. J. Appl. Phys. 50 04DM02
[7] Kim J, Shin D Y, Lee S, Liu X and Furdyna J K 2008 Phys. Rev. B 78 075309
[8] Kim J, Shin D Y, Yoo T, Kim H, Lee S, Liu X and Furdyna J K 2008 J. Appl. Phys. 103 07D101
[9] Welp U, Vlasko-Vlasov V K, Liu X, Furdyna J K and Wojtowicz T 2003 Phys. Rev. Lett. 90 167206
[10] Wang K Y, Sawicki M, Edmonds K W, Campion R P, Maat S, Foxon C T, Gallagher B L and Dietl T 2005 Phys. Rev. Lett. 95 217204
[11] Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vašek P, Novák V, Olejník K, Sinova J, Jungwirth T and Gallagher B L 2007 Phys. Rev. Lett. 99 147207
[12] Stanciu V, Wilhelmsson O, Bexell U, Adell M, Sadowski J, Kanski J, Warnicke P and Svedlindh P 2005 Phys. Rev. B 72 125324
[13] Edmonds KW, Boguslawski P, Wang K Y, Campion R P, Novikov S N, Farley N R S, Gallagher B L, Foxon C T, Sawicki M, Dietl T, Buongiorno Nardelli M and Bernholc J 2004 Phys. Rev. Lett. 92 037201
[14] Deng J J, Zhao J H, Jiang C P, Zhang Y, Niu Z C, Yang F H, Wu X G and Zheng H Z 2005 Chin. Phys. Lett. 22 466
[15] Kim J, Lee H, Yoo T, Lee S, Liu X and Furdyna J K 2011 Phys. Rev. B 84 184407
[16] Novák V, Olejník K, Wunderlich J, Cukr M, Výborný K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J and Jungwirth T 2008 Phys. Rev. Lett. 101 077201
[17] Yu K M, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y and Furdyna J K 2002 Phys. Rev. B 65 201303
[18] Chien C L and Westgate C R 1980 The Hall Effect and Its Applications (California: Plenum Press)
[19] Dietl T, Matsukura F, Ohno H, Cibert J and Ferrand D 2003 Hall Effect and Magnetoresistance in P-Type Ferromagnetic Semiconductors: Recent Trends in Theory of Physical Phenomena in High Magnetic Fields (Netherlands: Springer) p. 197
[20] Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208
[21] Wang K Y, Edmonds K W, Campion R P, Gallagher B L, Farley N R S, Foxon C T, Sawicki M, Boguslawski P and Dietl T 2004 J. Appl. Phys. 95 6512
[22] Jungwirth T, Wang K Y, Mašek J, Edmonds K W, König J, Sinova J, Polini M, Goncharuk N A, MacDonald A H, Sawicki M, Rushforth A W, Campion R P, Zhao L X, Foxon C T and Gallagher B L 2005 Phys. Rev. B 72 165204
[23] Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
[24] Kim J, Lee S, Lee S, Liu X and Furdyna J K 2010 Solid State Commun. 150 27
[25] Limmer W, Daeubler J, Dreher L, Glunk M, Schoch W, Schwaiger S and Sauer R 2008 Phys. Rev. B 77 205210
[26] Kim J, Yoo T, Chung S, Lee S, Liu X and Furdyna J K 2009 J. Appl. Phys. 105 07C501
[27] Lee S, Chung J H, Liu X, Furdyna J K and Kirby B J 2009 Materials Today 12 14
[28] Olejník K, Owen M H S, Novák V, Mašek J, Irvine A C, Wunderlich J and Jungwirth T 2008 Phys. Rev. B 78 054403
[29] Owen M H S, Wunderlich J, Novák V, Olejník K, Zemen J, Vyborny K, Ogawa S, Irvine A C, Ferguson A J, Sirringhaus H and Jungwirth T 2009 New J. Phys. 11 023008
[30] Endo M, Chiba D, Shimotani H, Matsukura F, Iwasa Y and Ohno H 2010 Appl. Phys. Lett. 96 022515
[1] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[2] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[5] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[6] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[7] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[8] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[9] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[10] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[11] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[12] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[13] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[14] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
[15] Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition
Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2016, 25(9): 097501.
No Suggested Reading articles found!