Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128101    DOI: 10.1088/1674-1056/22/12/128101

Fabrication and performance optimization of Mn–Zn ferrite/EP composites as microwave absorbing materials

Wang Wen-Jie, Zang Chong-Guang, Jiao Qing-Jie
State Key Laboratory of Explosive Science and Technology, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz).
Keywords:  ferrite      composite material      microwave absorber  
Received:  06 June 2013      Revised:  06 August 2013      Published:  25 October 2013
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  72.80.Tm (Composite materials) (Niobate- and tantalate-based films)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110014).
Corresponding Authors:  Zang Chong-Guang     E-mail:

Cite this article: 

Wang Wen-Jie, Zang Chong-Guang, Jiao Qing-Jie Fabrication and performance optimization of Mn–Zn ferrite/EP composites as microwave absorbing materials 2013 Chin. Phys. B 22 128101

[1] Yang X C, Liu R J, Shen X Q, Song F Z, Jing M X and Meng X F 2013 Chin. Phys. B 22 058101
[2] Wang W J, Jiao Q J, Zang C G and Zhu X D 2011 Adv. Mater. Res. 415–417 30
[3] Tsutaoka T, Kasagi T and Hatakeyama K 1999 J. Eur. Ceram Soc. 19 1531
[4] Wang W J, Zang C G and Jiao Q J 2011 Adv. Mater. Res. 399–401 310
[5] Grasset F, Labhsetwar N, Li D, Park D C, Saito N, Haneda H, Cador O, Roisnel T, Mornet S, Mornet S, Duguet E, Portier J and Etourneau J 2002 Langmuir 18 8209
[6] Xie J L, Han M G, Chen L, Kuang R X and Deng L J 2007 J. Magn. Magn. Mater. 314 37
[7] Shinde T J, Gadkari A B and Vasambekar P N 2013 J. Magn. Magn. Mater. 333 152
[8] Nejati K and Zabihi R 2012 Chem. Cent. J. 6 23
[9] Han M G and Deng L J 2013 Chin. Phys. B 22 083303
[10] Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504
[11] Ren W J and Zhang Z D 2013 Chin. Phys. B 22 077507
[12] Tian Y F, Hu S J, Yan S S and Mei L M 2013 Chin. Phys. B 22 088505
[13] Roy P K and Bera J 2008 J. Mater. Process. Tech. 197 279
[14] Dosoudil R, Ušáková M, Franek J, Grusková A and Sláma J 2008 J. Magn. Magn. Mater. 320 e849
[15] Han K C, Choi H D, Moon T J, Kim W S and Kim K Y 1995 J. Mater. Sci. 30 3567
[16] Wang W J, Gumfekar S P, Jiao Q J and Zhao B X 2013 J. Mater. Chem. C 1 2851
[17] Guo S L, Wang L D, Wang Y M, Wu H J and Shen Z Y 2013 Chin. Phys. B 22 044101
[18] Kulkarni D C, Lonkar U B and Puri V 2008 J. Magn. Magn. Mater. 320 1844
[19] Azadmanjiri J 2007 J. Non-Cryst. Solids 353 4170
[20] Zahi S, Hashim M and Daud A R 2007 J. Magn. Magn. Mater. 308 177
[21] Abbas S M, Dixit A K, Chatterjee R and Goel T C 2007 J. Magn. Magn. Mater. 309 20
[22] Verma A, Saxena A K and Dube D C 2003 J. Magn. Magn. Mater 263 228
[23] Singh P, Babbar V K, Razdan A, Puri R K and Goel T C 2000 J. Appl. Phys. 87 4362
[24] Kim S S, Kim S T, Ahn J M and Kim K H 2004 J. Magn. Magn. Mater. 271 39
[25] Zhu W B, Wang L, Zhao R, Ren J W, Lu G Z and Wang Y Q 2011 Nanoscale 3 2862
[1] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[2] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[3] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[4] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[5] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[6] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[7] Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition
Da-Ming Chen(陈大明), Yuan-Xun Li(李元勋), Li-Kun Han(韩莉坤), Chao Long(龙超), Huai-Wu Zhang(张怀武). Chin. Phys. B, 2016, 25(6): 068403.
[8] Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites
R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare. Chin. Phys. B, 2016, 25(4): 047501.
[9] Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties
Hui Zheng(郑辉), Man-Gui Han(韩满贵), Long-Jiang Deng(邓龙江). Chin. Phys. B, 2016, 25(2): 026201.
[10] Tuning of magnetic properties of aluminium-doped strontium hexaferrite powders
Xiao-Mei Ma(马小梅), Jie Liu(刘杰), Sheng-Zhi Zhu(朱生志), Hui-Gang Shi(史慧刚). Chin. Phys. B, 2016, 25(12): 126102.
[11] Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder
E Mehran, S Farjami Shayesteh, M Sheykhan. Chin. Phys. B, 2016, 25(10): 107504.
[12] Evolution of structure and physical properties in Al-substituted Ba-hexaferrites
Alex Trukhanov, Larisa Panina, Sergei Trukhanov, Vitalii Turchenko, Mohamed Salem. Chin. Phys. B, 2016, 25(1): 016102.
[13] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei, Xu Xiao-Wen, He Mang, Zhang Hong-Wang. Chin. Phys. B, 2015, 24(6): 067503.
[14] Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline
Abdollah Hajalilou, Mansor Hashim, Reza Ebrahimi-Kahrizsangi, Mohamad Taghi Masoudi. Chin. Phys. B, 2015, 24(4): 048102.
[15] Tunable wideband absorber based on resistively loaded lossy high-impedance surface
Dang Ke-Zheng, Shi Jia-Ming, Wang Jia-Chun, Lin Zhi-Dan, Wang Qi-Chao. Chin. Phys. B, 2015, 24(10): 104104.
No Suggested Reading articles found!