Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 127102    DOI: 10.1088/1674-1056/22/12/127102

Ab initio investigation of the structural and unusual electronic properties of α-CuSe (klockmannite)

Ali Reza Shojaeia b, Zahra Nourbakhsha, Aminollah Vaeza, Mohammad Dehghania
a Physics Department, Faculty of Science, University of Isfahan, 81746-73441 Isfahan, Iran;
b Physics Department, Technical and Vocational University-Mohajer Center, 81645-315 Isfahan, Iran
Abstract  In this article, a computational analysis has been performed on the structural properties and predominantly on the electronic properties of the α-CuSe (klockmannite) using density functional theory. The studies in this work show that the best structural results, in comparison to the experimental values, belong to the PBEsol-GGA and WC-GGA functionals. However, the best results for the bulk modulus and density of states (DOSs) are related to the local density approximation (LDA) functional. Through utilized approaches, the LDA is chosen to investigate the electronic structure. The results of the electronic properties and geometric optimization of α-CuSe respectively show that this compound is conductive and non-magnetic. The curvatures of the energy bands crossing the Fermi level explicitly reveal that major charge carriers in CuSe are holes, whose density is estimated to be 0.86×1022 hole/cm3. In particular, the Fermi surfaces in the first Brillouin zone demonstrate interplane conductivity between (001) planes. Moreover, the charge carriers among them are electrons and holes simultaneously. The conductivity in CuSe is mainly due to the hybridization between the d orbitals of Cu atoms and the p orbitals of Se atoms. The former orbitals have the dual nature of localization and itinerancy.
Keywords:  klockmannite      α-CuSe      structural properties      electronic properties  
Received:  21 May 2013      Revised:  17 June 2013      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  72.80.-r (Conductivity of specific materials)  
Corresponding Authors:  Ali Reza Shojaei     E-mail:

Cite this article: 

Ali Reza Shojaei, Zahra Nourbakhsh, Aminollah Vaez, Mohammad Dehghani Ab initio investigation of the structural and unusual electronic properties of α-CuSe (klockmannite) 2013 Chin. Phys. B 22 127102

[1] Earley J W 1949 Am. Mineral 34 435
[2] Berry L G 1954 Am. Mineral 39 504
[3] Taylor C A and Underwood F A 1960 Acta Crystallogr. 13 361
[4] Lippmann F 1962 Neues Jahrbuch Mineral Monatsh 99
[5] Heyding R D 1966 Can. J. Chem. 44 1233
[6] Elliott J A, Bicknell J A and Collinge R G 1969 Acta Crystallogr., Sect. B 25 2420
[7] Elliott J A, Bicknell J A and Collinge R G 1969 Acta Crystallographica B 25 2420
[8] Stevels A L N 1969 Philips Research Reports Supplement 9 38
[9] Stevels A L N and Jellinek F 1971 J. Phys. Chem. 111 273
[10] Heyding R D and Murray R M 1976 Can. J. Chem. 54 841
[11] Brun G, Tedenac J C and Maurin M 1982 Mater. Res. Bull. 17 379
[12] Nozaki H, Shibata K, Onoda M, Yukino K and Ishii M 1994 Mater. Res. Bull. 29 203
[13] Stolen S, Fjellvg H, Grnvold F, Sipowska J T and Westrum J E F 1996 J. Chem. Thermodyn. 28 753
[14] Milman V 2002 Acta Crystallogr., Sect. B 58 437
[15] Peiris S M, Pearson T T and Heinz D L 1998 J. Chem. Phys. 109 634
[16] Ogorelec Z and Selinger O 1971 J. Mater. Sci. 6 136
[17] Folmer J C W and Jellinek F J 1980 J. Less-Common Metals 76 153
[18] Pejova B and Grozdanov I 2001 J. Solid State Chem. 158 49
[19] Gosavi S R, Deshpande N G, Gudage Y G and Sharma R 2008 J. Alloys Compd. 448 344
[20] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[21] Madsen G K H, Blaha P, Schwarz K, Sjostedt E and Nordstrm L 2001 Phys. Rev. B 64 195134
[22] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J and Schwarz K 2010 WIEN2K, An Augmented Plane Waves+Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology)
[23] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[24] Perdew J P, Ruzsinszky A, Csonka G B I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[25] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[1] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[2] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[3] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[4] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[5] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[6] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[7] First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite
Xin-Feng Diao(刁心峰), Yan-Lin Tang(唐延林), Quan Xie(谢泉). Chin. Phys. B, 2019, 28(1): 017802.
[8] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[9] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[10] Uniaxial strain-modulated electronic structures of CdX (X=S, Se, Te) from first-principles calculations: A comparison between bulk and nanowires
Linlin Xiang(相琳琳), Shenyuan Yang(杨身园). Chin. Phys. B, 2017, 26(8): 087103.
[11] Electronic, optical, and mechanical properties of BN, AlN, and InN with zinc-blende structure under pressure
A R Degheidy, E B Elkenany. Chin. Phys. B, 2017, 26(8): 086103.
[12] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[13] First-principles study of the new potential photovoltaic absorber: Cu2MgSnS4 compound
Belmorsli Bekki, Kadda Amara, Mohammed El Keurti. Chin. Phys. B, 2017, 26(7): 076201.
[14] Anisotropic and mutable magnetization in Kondo lattice CeSb2
Yun Zhang(张云), Xiegang Zhu(朱燮刚), Bingfeng Hu(胡丙锋), Shiyong Tan(谭世勇), Donghua Xie(谢东华), Wei Feng(冯卫), Qin Liu(刘琴), Wen Zhang(张文), Yu Liu(刘瑜), Haifeng Song(宋海峰), Lizhu Luo(罗丽珠), Zhengjun Zhang(张政军), Xinchun Lai(赖新春). Chin. Phys. B, 2017, 26(6): 067102.
[15] Synthesis and characterization of NaAlSi2O6 jadeite under 3.5 GPa
Gang Li(李刚), Jian Wang(王健), Ya-Dong Li(李亚东), Ning Chen(陈宁), Liang-Chao Chen(陈良超), Long-Suo Guo(郭龙锁), Liang Zhao(赵亮), Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2017, 26(6): 068202.
No Suggested Reading articles found!