Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108902    DOI: 10.1088/1674-1056/22/10/108902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The effect of moving bottlenecks on a two-lane traffic flow

Fang Yuan, Chen Jian-Zhong, Peng Zhi-Yuan
College of Automation, Northwestern Polytechnical University, Xi’an 710129, China
Abstract  In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to reproduce the vehicular lane changing behavior. Using this model, we derive the fundamental current–density diagrams for the traffic flow with the effect of moving bottleneck. Moreover, typical time–space diagram for a two-lane highway shows the formation and dissipation of a moving bottleneck. Results demonstrate that the effect of moving bottleneck enlarges with the increase of traffic density, but the effect can be reduced by increasing the maximum velocity of heavy truck. The effects of multiple moving bottlenecks under different conditions are investigated. The effect becomes more remarkable when the coupling effect of multiple moving bottlenecks occurs.
Keywords:  traffic flow      moving bottleneck      lane changing      coupling effect     
Received:  24 December 2012      Published:  30 August 2013
PACS:  89.40.-a (Transportation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11102165), the Natural Science Basis Research Plan in Shaanxi Province, China (Grant No. 2012JM1001), and the Foundation for Fundamental Research of Northwestern Polytechnical University, China (Grant No. NPU-FFR-JC201254).
Corresponding Authors:  Chen Jian-Zhong     E-mail:  jzhchen@nwpu.edu.cn

Cite this article: 

Fang Yuan, Chen Jian-Zhong, Peng Zhi-Yuan The effect of moving bottlenecks on a two-lane traffic flow 2013 Chin. Phys. B 22 108902

[1] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[2] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[3] Chen J Z, Shi Z K and Hu Y M 2012 Int. J. Mod. Phys. 23 1250048
[4] Jin C J, Wang W, Gao K and Jiang R 2011 Chin. Phys. B 20 064501
[5] Helbing D, Isobe M, Nagatani T and Takimoto K 2003 Phys. Rev. E 67 067101
[6] Safonov L A, Tomer E, Strygin V V and Havlin S 2000 Physica A 285 147
[7] Chen J Z, Shi Z K and Hu Y M 2012 J. Zhejiang Univ.-Sci. C 13 29
[8] Bentaleb K, Jetto K, Ez-Zahraouy H and Benyoussef A 2013 Chin. Phys. B 22 018902
[9] Jiang R, Helbing D, Shukla P K and Wu Q S 2006 Physica A 368 567
[10] Ning H X and Xue Y 2012 Chin. Phys. B 21 040506
[11] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 31
[12] Tang C F, Jiang R and Wu Q S 2007 Chin. Phys. 16 1570
[13] Nagatani T 2007 Physica A 377 651
[14] Liu W K, Guan Z H and Liao R Q 2010 Chin. Phys. Lett. 27 108902
[15] Naito Y and Nagatani T 2012 Physica A 391 1626
[16] Li C Y, Tang T Q, Huang H J and Shang H Y 2011 Chin. Phys. Lett. 28 038902
[17] Laval J A and Daganzo C F 2006 Transpn. Res. Part B 40 251
[18] Hoogendoorn S P and Bovy P H L 2001 Transpn. Res. Part B 35 317
[19] Komada K, Masukura S and Nagatani T 2009 Physica A 388 2880
[20] Jin W L 2010 Transpn. Res. Part B 44 1001
[21] Nagatani T and Sugiyama N 2013 Physica A 392 851
[22] Nagatani T 1998 Physica A 261 599
[23] Tang T Q, Huang H J, Xu X Y and Xue Y 2007 Chin. Phys. Lett. 24 1410
[24] Chen Y S, Xiao R M, Ma L and Qin H R 2008 Journal of Traffic and Transportation Engineering 8 91 (in Chinese)
[25] Chen Y S, Xiao R M and Qin H R 2009 Journal of Traffic and Transportation Engineering 9 83 (in Chinese)
[26] Li Y 2009 "The Research on Moving Bottleneck on Expressway Based on the Cellular Automata Simulation", M. S. Thesis (Changsha: Changsha University of Science & Technology) (in Chinese)
[27] Gazis D C and Herman R 1992 Transpn. Sci. 26 223
[28] Newell G F 1998 Transpn. Res. B 32 531
[29] Muñoz J C and Daganzo C F 2002 Proceedings of the 15th International Symposium on Transportation and Traffic Theory, July 16, 2002, Pergamon, Adelaide, Australia, p. 441
[30] Juran I, Prashker J N, Bekhor S and Ishai I 2009 Transpn. Res. Part C 17 240
[31] Kerner B S and Klenov S L 2010 J. Phys. A: Math. Theor. 43 425101
[32] Masukura S, Nagatani T and Tanaka K 2009 Physica A 388 1196
[33] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[34] Bando M, Hasebe K, Nakayama A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[1] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[2] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[3] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[4] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[5] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[6] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[7] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[8] The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology
Jia-Xin Zheng(郑佳欣), Xiao-Hua Ma(马晓华), Yang Lu(卢阳), Bo-Chao Zhao(赵博超), Heng-Shuang Zhang(张恒爽), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(8): 088401.
[9] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[10] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[11] An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰). Chin. Phys. B, 2016, 25(4): 047305.
[12] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
[13] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[14] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang, Liu Xiao-He, Guo Ming-Min, Wu Zheng. Chin. Phys. B, 2015, 24(9): 098901.
[15] Equivalent circuit model including magnetic and thermo sources for the thermo–magneto–electric coupling effect in magnetoelectric laminates
Cui Xiao-Le, Zhou Hao-Miao. Chin. Phys. B, 2015, 24(7): 077506.
No Suggested Reading articles found!