Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 023101    DOI: 10.1088/1674-1056/21/2/023101
RAPID COMMUNICATION Prev   Next  

Density functional theory study of the interaction of H2 with pure and Ti-doped WO3 (002) surfaces

Hu Ming(胡明), Wang Wei-Dan(王巍丹), Zeng Peng(曾鹏), Zeng Jing(曾晶), and Qin Yu-Xiang(秦玉香)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  Density functional theory (DFT) calculations are conducted to explore the interaction of H2 with pure and Ti-doped WO3 (002) surfaces. Four top adsorption models of H2 on pure and Ti-doped WO3 (002) surfaces are investigated respectively, they are adsorption on bridging oxygen O1c, absorption on plane oxygen O2c, absorption on 5-fold W5c (Ti), and absorption on 6-fold W6c. The most stable and H2 possible adsorption structure in the pure surface is H-end oriented to the surface plane oxygen O2c site, while the favourable adsorption sites for H2 in a Ti-doped surface is not only an O2c site but also a W6c site. The adsorption energy, the Fermi energy level EF, and the electronic population are investigated and the H2-sensing mechanism of a pure-doped WO3 (002) surface is revealed theoretically: the theoretical results are in good accordance with our existing experimental results. By comparing the above three terms, it is found that Ti doping can obviously enhance the adsorption of H2. It can be predicted that the method of Ti-doped into a WO3 thin film is an effective way to improve WO3 sensor sensitivity to H2 gas.
Keywords:  H2 adsorption      WO3 (002) surface      Ti-doped      density functional theory  
Received:  07 October 2011      Revised:  23 October 2011      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  21.60.De (Ab initio methods)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60771019 and 60801018), the Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300), the Tianjin Natural Science Foundation, China (Grant No. 09JCYBJC01100), and the New Teacher Foundation of the Ministry of Education, China (Grant No. 200800561109).
Corresponding Authors:  Hu Ming,huming@tju.edu.cn     E-mail:  huming@tju.edu.cn

Cite this article: 

Hu Ming(胡明), Wang Wei-Dan(王巍丹), Zeng Peng(曾鹏), Zeng Jing(曾晶), and Qin Yu-Xiang(秦玉香) Density functional theory study of the interaction of H2 with pure and Ti-doped WO3 (002) surfaces 2012 Chin. Phys. B 21 023101

[1] Lad R J, Moulzolf S C and Ding S A 2001 Sensors and Actuators B: Chemical 77 375
[2] Phanichphant S, Samerjai T, Tamaekong N, Liewhiran C, Wisitsoraat A and Tuantranont A 2011 Sensors and Actuators B: Chemical 157 290
[3] Sberveglieri G, Depero L, Groppelli S and Nelli P 1995 it Sensors and Actuators B: Chemical 26 89
[4] Penza M, Martucci C and Cassano G 1998 Sensors and Actuators B: Chemical 50 52
[5] Penza M, Tagliente M A, Mirenghi L, Gerardi C, Martucci C and Cassano G 1998 Sensors and Actuators B: Chemical 50 9
[6] Tomchenko A A, Khatko V V and Emelianov I L 1998 Sensors and Actuators B: Chemical 46 8
[7] Lee D S, Han S D, Huh J S and Lee D D 1999 Sensors and Actuators B: Chemical 60 57
[8] Siciliano T, Tepore A, Micocci G, Serra A, Manno D and Filippo E 2008 Sensors and Actuators B: Chemical 133 321
[9] Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T and Nakatani N 2009 Thin Solid Films 517 2069
[10] Tao W H and Tsai C H 2002 Sensors and Actuators B: it Chemical 81 237
[11] Khadayate R S, Waghulde R B, Wankhede M G, Sali J V and Patil P P 2007 Bull. Mater. Sci. 30 129
[12] Zhang J, Liu X, Xu M, Guo X, Wu S, Zhang S and Wang S 2010 it Sensors and Actuators B: Chemical 147 185
[13] Srivastava V and Jain K 2008 Sensors and Actuators B: it Chemical 133 46
[14] Ippolito S J, Kandasamy S, Kalantar-Zadeh K and Wlodarski W 2005 Sensors and Actuators B: Chemical 108 154
[15] Sumida S, Okazaki S, Asakura S, Nakagawa H, Murayama H and Hasegawa T 2005 Sensors and Actuators B: Chemical 108 508
[16] Yaacob M H, Breedon M, Kalantar-Zadeh K and Wlodarski W 2009 Sensors and Actuators B: Chemical 137 115
[17] Zhang C, Boudiba A, Navio C, Bittencourt C, Olivier M G, Snyders R and Debliquy M 2011 International Journal of Hydrogen Energy 36 1107
[18] Chaudhari G N, Bende A M, Bodade A B, Patil S S and Sapkal V S 2006 Sensors and Actuators B: Chemical 115 297
[19] Hu M, Zhang J, Wang W D and Qin Y X 2011 Chin. Phys. B 20 082101
[20] Hu M, Wang W D, Zeng J and Qin Y X 2011 Chin. Phys. B 20 102101
[21] Qin Y, Hu M and Zhang J 2010 Sensors and Actuators B: Chemical 150 339
[22] Guo Y F, Quan X, Lu N, Zhao H M and Chen S 2007 it Environmental Science & Technology 41 4422
[23] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[24] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[25] Kresse G and Furthm黮ler J 1996 Phys. Rev. B bf 54 11169
[26] Neyman K M and Illas F 2005 Catalysis Today 105 2
[27] Kotochigova S, Levine Z H, Shirley E L, Stiles M D and Clark C W 1997 Phys. Rev. A 55 191
[28] Ling S, Mei D and Gutowski M 2011 Catalysis Today bf 165 41
[29] Hu M, Feng Y C, Yin Y Z and Chen P 2008 Transducer and Microsystem Technologies 27 46
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!