Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 023102    DOI: 10.1088/1674-1056/21/2/023102
GENERAL Prev   Next  

Investigations of spectroscopic parameters and molecular constants for X1Σg+, w3Δu, and W1Δu electronic states of P2 molecule

Wang Jie-Min(王杰敏)a)†, Feng Heng-Qiang(冯恒强)a), Sun Jin-Feng(孙金锋)a)b), and Shi De-Heng(施德恒)b)
a. Department of Physics & Electronic Information, Luoyang Normal College, Luoyang 471022, China;
b. College of Physics & Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  The potential energy curves (PECs) of three low-lying electronic states (X1Σg+, w3Δu, and W1Δu)of P2 molecule are investigated using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent basis set in the valence range. The PECs of the electronic states involved are modified by the Davidson correction and extrapolated to the complete basis set (CBS) limit. With these PECs, the spectroscopic parameters of the three electronic states are determined and compared in detail with the experimental data. The comparison shows that excellent agreement exists between the present results and the available experimental data. The complete vibrational states are computed for the w3Δu, and W1Δu electronic states when the rotational quantum number J equals zero and the vibrational level G(v), the inertial rotation constant Bv, and the centrifugal distortion constant Dv of the first 30 vibrational states are reported, which accord well with the experimental data. The present results show that the two-point extrapolation scheme can obviously improve the quality of spectroscopic parameters and molecular constants.
Keywords:  spectroscopic parameter      molecular constant      Davidson correction extrapolation  
Received:  10 July 2011      Revised:  24 July 2011      Accepted manuscript online: 
PACS:  31.50.-x (Potential energy surfaces)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064 and 60777012), the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2010HASTIT022), and the Program for Science & Technology of Henan Province, China (Grant No. 092300410189).
Corresponding Authors:  Wang Jie-Min,     E-mail:

Cite this article: 

Wang Jie-Min(王杰敏), Feng Heng-Qiang(冯恒强), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒) Investigations of spectroscopic parameters and molecular constants for X1Σg+, w3Δu, and W1Δu electronic states of P2 molecule 2012 Chin. Phys. B 21 023102

[1] Donnelly V M and Karlicek R F 1982 J. Appl. Phys. 53 6399
[2] Howe J D, Puyuelo P, Ashfold M N R and Western C M 1993 J. Chem. Soc. Faraday Trans. 89 2337
[3] Brion J and Malicet J 1976 J. Phys. B 9 2097
[4] Carroll P K and Nulty A T 1980 J. Mol. Spectrosc. 79 62
[5] Marais E 1946 J. Phys. Rev. 70 499
[6] Marais E J and Verleger H 1950 Phys. Rev. 80 429
[7] Douglas A E and Suryanarayana Rao K 1958 Can. J. Phys. 36 565
[8] Creutzberg F 1966 Can. J. Phys. 44 1583
[9] Mrozowski S and Santaram C 1967 J. Opt. Soc. Am. 57 522
[10] Brion J, Malicet J and Guenebaut H 1974 Can. J. Phys. 52 2143
[11] Brion J, Malicet J and Guenebaut H 1976 Can. J. Phys. 54 362
[12] Brion J, Malicet J and Merienne-Lafore M F 1977 Can. J. Phys. 55 68
[13] Amiot C, Effantin C and D'incan J 1978 J. Mol. Spectrosc. 72 189
[14] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (New York: van Nostrand Reinhold)
[15] Wu L, Zheng L J, Kaniki K, Chen Y Q and Yang X H 2007 Chin. Phys. Lett. 24 90
[16] Lakshman S V J and Rao T V R 1971 J. Phys. B 4 269 and references therein
[17] Boyd D B and Lipscomb W N 1967 J. Chem. Phys. 46 910
[18] Mulliken R S and Liu B 1971 J. Am. Chem. Soc. 93 6738
[19] Osman R, Coffey P and van Wazer J R 1976 Inorg. Chem. 15 287
[20] Nagy-Felsobuki E and Peel J B Aust. 1978 J. Chem. 31 2571
[21] Wedig U, Stoll H and Preuss H 1981 Chem. Phys. 61 117
[22] Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
[23] Muniz E P and Jorge F E 2006 Int. J. Quantum Chem. 106 943
[24] Mclean A D, Liu B and Chandler G S 1984 J. Chem. Phys. 80 5130
[25] Ahlrichs R, Brode S and Ehrhardt C 1985 J. Am. Chem. Soc. 107 7260
[26] Yilmaz H 1992 J. Mol. Struct. 257 285
[27] Raghavachari K, Haddon R C and Binkley J S 1985 Chem. Phys. Lett. 122 219
[28] Jones R O and Hohl D 1990 J. Chem. Phys. 92 6710
[29] Widmark P O, Persson B J andRoos B O 1991 Theor. Chim. Acta 79 419
[30] Woon D E and Dunning T H 1994 J. Chem. Phys. 101 8877
[31] de Brouckère G, Feller D and Brion J 1994 J. Phys. B 27 1657
[32] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[33] Shi D H, Zhang J P, Sun J F, Liu Y F and Zhu Z L 2009 Acta Phys. Sin. 58 5329 (in Chinese)
[34] Wang J M, Sun J F and Shi D H 2010 Chin. Phys. B 19 113404
[35] Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. Phys. B 19 013501
[36] Wang X Q, Yang C L, Su T and Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)
[37] Shi D H, Liu H, Sun J F, Zhu Z L and Liu Y F 2011 J. Mol. Spectrosc. 269 143
[38] Shi D H, Liu H, Sun J F, Zhu Z L and Liu Y F 2011 J. Quantum Spectrosc. Radiat. Transf. 112 2567
[39] Müller T, Dallos M, Lischka H, Dubrovay Z and Szalay P G 2001 Theor. Chem. Acc. 15 227
[40] Werner H J, Knowles P J, Lindh R, Manby F R, Sch黷z M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pfl黦er K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio programs
[41] Karlström G, Lindh R, Malmqvist P AA, Roos B O, Ryde U, Veryazov V, Widmark P O, Cossi M, Schimmelpfennig B, Neogrady P and Seijo L 2003 Comp. Mater. Sci. 28 222
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[3] Accurate spectroscopic constants of the lowest two electronic states in S2 molecule with explicitly correlated method
Changli Wei(魏长立), Xiaomei Zhang(张晓美), Dajun Ding(丁大军), Bing Yan(闫冰). Chin. Phys. B, 2016, 25(1): 013102.
[4] Study on the A2Π3/2u, B2Δ3/2u, and X2Π3/2g states of Cl2+ including its isotopologues
Wu Ling (吴玲), You Su-Ping (尤素萍), Shao Xu-Ping (邵旭萍), Chen Gang-Jin (陈钢进), Ding Ning (丁宁), Wang You-Mei (汪友梅), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2015, 24(8): 083301.
[5] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[6] Accurate ab initio-based analytical potential energy function for S21Δg) via extrapolation to the complete basis set limit
Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田), Song Yu-Zhi (宋玉志). Chin. Phys. B, 2015, 24(1): 013101.
[7] Potential energy curves and spectroscopic properties of X2Σ+ and A2Π states of 13C14N
Liao Jian-Wen (廖建文), Yang Chuan-Lu (杨传路). Chin. Phys. B, 2014, 23(7): 073401.
[8] Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule
Wang Jie-Min (王杰敏), Liu Qiang (刘强). Chin. Phys. B, 2013, 22(9): 093102.
[9] Global analysis of the Comet-tail system of 12C16O+
Shao Xu-Ping (邵旭萍), Zhao Min (赵敏), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2013, 22(7): 073302.
[10] Potential energy curve study on the 3Π electronic states of GaX (X=F, Cl, and Br) molecules
Cao Yun-Bin (曹云斌), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光). Chin. Phys. B, 2013, 22(12): 123401.
[11] Spectroscopic investigations on NO$^{ + }$($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, $A^{1}\varPi$) ion using multi-reference configuration interaction method and correlation-consistent sextuple basis set augmented with diffuse functions #br#
Zhang Jin-Ping (张金平), Cheng Xin-Lu (程新路), Zhang Hong (张红), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2011, 20(6): 060401.
[12] MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) . Chin. Phys. B, 2011, 20(4): 043105.
[13] Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical
Liu Yu-Fang(刘玉芳) and Jia Yi(贾毅). Chin. Phys. B, 2011, 20(3): 033106.
[14] Study on spectroscopic parameters and molecular constants of HCl(X1+) molecule by using multireference configuration interaction approach
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhang Jin-Ping(张金平), Zhu Zun-Lüe(朱遵略), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2010, 19(5): 053401.
[15] Theoretical study on the complexes of He, Ne and Ar
Tong Xiao-Fei(童小菲), Yang Chuan-Lu(杨传路), Xiao Jing(肖静), Wang Mei-Shan(王美山), and Ma Xiao-Guang(马晓光). Chin. Phys. B, 2010, 19(12): 123102.
No Suggested Reading articles found!