Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080502    DOI: 10.1088/1674-1056/20/8/080502
GENERAL Prev   Next  

Controlling the collision between two solitons in the condensates by a double-barrier potential

Li Zhi-Jian(李志坚)a) and Li Jin-Hui(李锦茴)b)
a Information Science and Engineering Department, Hunan First Normal University, Changsha 410205, China; b Mathematics and Science Department, Hunan First Normal University, Changsha 410205, China
Abstract  We present an analytical solution of two solitons of Bose—Einstein condensates trapped in a double-barrier potential by using a multiple-scale method. In the linear case, we find that the stable spots of the soliton formation are at the top of the barrier potential and at the region of barrier potential absence. For weak nonlinearity, it is shown that the height of the barrier potential has an important effect on the dark soliton dynamical properties. Especially, in the case of regarding a double-barrier potential as the output source of the solitons, the collision spots between two dark solitons can be controlled by the height of the barrier potential.
Keywords:  Bose—Einstein condensates      solitons      double-barrier potential  
Received:  18 December 2010      Revised:  04 March 2011      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  02.90.+p (Other topics in mathematical methods in physics)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: Project supported by the Science Research Foundation of the Education Bureau of Hunan Province of China (Grant No. 09C227).

Cite this article: 

Li Zhi-Jian(李志坚) and Li Jin-Hui(李锦茴) Controlling the collision between two solitons in the condensates by a double-barrier potential 2011 Chin. Phys. B 20 080502

[1] Pethick C J and Smith H 2002 Bose—Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[2] Pitaevskii L and Stringari S 2003 Bose—Einstein Condensation (Oxford: Clarendon)
[3] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[4] Ji A C, Sun Q, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 023602
[5] Wang D L, Yan X H and Liu W M 2008 Phys. Rev. E 78 026606
[6] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E bf 76 026605
[7] Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 it Phys. Rev. A 77 023613
[8] Huang G X, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617
[9] Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev. A bf 65 053605
[10] Zhang W X, Wang D L, He Z M, Wang F J and Ding J W 2008 it Phys. Lett. A 372 4407
[11] Wang D L, Yan X H and Wang F J 2007 Chin. Phys. Lett. 24 1817
[12] Zhang J M and Liu W M 2010 Phys. Rev. A 82 025602
[13] Chen Y H, Wu W, Tao H S and Liu W M 2010 Phys. Rev. A 82 043625
[14] Li Q Y, Li Z D, Yao S F, Li L and Fu G S 2010 Chin. Phys. B 19 080501
[15] Song W W, Li Q Y, Li Z D and Fu G S 2010 Chin. Phys. B 19 070503
[16] Li Z D, Li Q Y, He P B, Liang J Q, Liu W M and Fu G S 2010 it Phys. Rev. A 81 015602
[17] He Z M, Wang D L, Zhang W X, Wang F J and Ding J W 2008 it Chin. Phys. B 17 3640
[18] Zhang W X, Wang D L and Ding J W 2008 Acta Phys. Sin. 57 6786 (in Chinese)
[19] Xi Y D, Wang D L, He Z M and Ding J W 2009 Chin. Phys. B 18 0939
[20] He Z M and Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese)
[21] Li Q Y, Li Z D, Wang S X, Song W W and Fu G S 2009 Opt. Commun. 282 1676
[22] Xi Y D, Wang D L, She Y C, Wang F J and Ding J W 2010 it Acta Phys. Sin. 59 3720 (in Chinese)
[23] She Y C, Wang D L and Ding J W 2009 Acta Phys. Sin. bf 58 3198 (in Chinese)
[24] She Y C, Wang D L, Zhang W X, He Z M and Ding J W 2010 J. Opt. Soc. Am. B 27 208
[25] Andersen J O 2004 Rev. Mod. Phys. 76 599
[26] Burger S, Bongs K, Dettmer S, Ertmer W and Sengstock K 1999 Phys. Rev. Lett. 83 5198
[27] Paul T, Richter K and Schlagheck P 2005 Phys. Rev. Lett. 94 020404
[28] Carusotto I and La Rocca G C 1999 Phys. Rev. Lett. bf 84 399
[29] Carusotto I 2001 Phys. Rev. A 63 023610
[30] Johansson M and Kivshar Y S 1999 Phys. Rev. Lett. bf 82 85
[31] Wang D L, Yan X H and Tang Y 2004 J. Phys. Soc. Jpn. bf 73 123
[32] Wang D L, Yang R S and Yang Y Y 2007 Commun. Theor. Phys. (Beijing, China) 48 917
[33] Wang D L and Yan X H 2011 Int. J. Mod. Phys. B 25 781
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[9] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[10] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[11] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[12] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[13] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[14] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[15] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
No Suggested Reading articles found!