Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070504    DOI: 10.1088/1674-1056/20/7/070504
GENERAL Prev   Next  

Universal critical properties of the Eulerian bond-cubic model

Ding Cheng-Xiang(丁成祥)a), Yao Gui-Yuan(姚桂元)a), Li Song(李崧)b)†, Deng You-Jin(邓友金)c)‡, and Guo Wen-An(郭文安)a)
a Physics Department, Beijing Normal University, Beijing 100875, China; b Analysis and Testing Center, Beijing Normal University, Beijing 100875, China; c Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei 230027, China
Abstract  We investigate the Eulerian bond-cubic model on the square lattice by means of Monte Carlo simulations, using an efficient cluster algorithm and a finite-size scaling analysis. The critical points and four critical exponents of the model are determined for several values of n. Two of the exponents are fractal dimensions, which are obtained numerically for the first time. Our results are consistent with the Coulomb gas predictions for the critical O(n) branch for n < 2 and the results obtained by previous transfer matrix calculations. For n=2, we find that the thermal exponent, the magnetic exponent and the fractal dimension of the largest critical Eulerian bond component are different from those of the critical O(2) loop model. These results confirm that the cubic anisotropy is marginal at n=2 but irrelevant for n<2.
Keywords:  phase transition and critical phenomena      Eulerian-bond cubic model      Monte Carlo simulation      fractal dimension  
Received:  25 March 2011      Revised:  01 April 2011      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  64.60.Cn (Order-disorder transformations)  
  64.60.F- (Equilibrium properties near critical points, critical exponents)  
  75.10.Hk (Classical spin models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10675021), the New Century Excellent Talents in University of China, the Natural Science Foundation of Anhui Province of China (Grant No. 090416224), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103402110053).

Cite this article: 

Ding Cheng-Xiang(丁成祥), Yao Gui-Yuan(姚桂元), Li Song(李崧), Deng You-Jin(邓友金), and Guo Wen-An(郭文安) Universal critical properties of the Eulerian bond-cubic model 2011 Chin. Phys. B 20 070504

[1] Blöte H W J and Nightingale M P 1984 Physica A 129 1
[2] Guo W A, Qian X F and Blöte H W J 2006 Phys. Rev. E 73 026104
[3] Potts R B 1954 Proc. Camb. Phil. Soc. 48 106
[4] Wu F Y 1982 Rev. Mod. Phys. 54 235
[5] Kasteleyn P W and Fortuin C M 1969 J. Phys. Soc. Japan 46 (suppl.) 11
[6] Fortuin C M and Kasteleyn P W 1972 Physica 57 536
[7] Stanley H W 1974 Phase Transitions and Critical Phenomena Vol. 3 (London: Academic Press)
[8] Chayes L and Machta J 1997 Physica A 239 542
[9] Chayes L and Machta J 1998 Physica A 254 477
[10] Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86
[11] Ding C X, Deng Y, Guo W A, Qian X F and Blöte H W J 2007 J. Phys. A: Math. Theor. 40 3305
[12] Deng Y, Garoni T M, Guo W A, Blöte H W J and Sokal A D 2007 Phys. Rev. Lett. 98 120601
[13] Qian X F, Deng Y and Blöte H W J 2005 Phys. Rev. E 71 016709
[14] Ding C X, Deng Y, Guo W A and Blöte H W J 2009 Phys. Rev. E 79 061118
[15] Wolff U 1989 Phys. Rev. Lett. 62 361
[16] Stauffer D and Aharony A 1984 Introduction to Percolation Theory 2nd edn. (London: Taylor & Francis)
[17] Nightingale M P 1990 Finite-Size Scaling and Numerical Simulation of Statistical Systems (Singapore: World Scientific)
[18] Barber M N 1983 Phase Transitions and Critical Phenomena Vol. 8 (New York: Academic Press)
[19] Nienhuis B 1982 Phys. Rev. Lett. 49 1062
[20] Nienhuis B 1984 J. Stat. Phys. 34 731
[21] Saleur H and Duplantier B 1987 Phys. Rev. Lett. 58 2325
[22] Duplantier B 2000 Phys. Rev. Lett. 84 1363
[23] den Nijs M P M 1981 Phys. Rev. B 23 6111
[24] Knops H J F 1980 Ann. Phys. 128 448
[25] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic Press)
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[5] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[9] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[10] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[13] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[14] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[15] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
No Suggested Reading articles found!