Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050315    DOI: 10.1088/1674-1056/20/5/050315
GENERAL Prev   Next  

Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation

Hu Xiao(胡晓) and Li Biao(李彪)
Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo 315211, China
Abstract  By the generalized sub-equation expansion method and symbolic computation, this paper investigates the (3+1)-dimensional Gross–Pitaevskii equation with time- and space-dependent potential, time-dependent nonlinearity, and gain or loss. As a result, rich exact analytical solutions are obtained, which include bright and dark solitons, Jacobi elliptic function solutions and Weierstrass elliptic function solutions. With computer simulation, the main evolution features of some of these solutions are shown by some figures. Nonlinear dynamics of a soliton pulse is also investigated under the different regimes of soliton management.
Keywords:  Gross–Pitaevskii equation      soliton solutions      Bose–Einstein condensate      symbolic computation  
Received:  23 November 2010      Revised:  23 December 2010      Accepted manuscript online: 
PACS:  03.75.-b  
  05.45.Yv (Solitons)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by Zhejiang Provincial Natural Science Foundations of China (Grant No. Y6090592), National Natural Science Foundation of China (Grant Nos. 11041003 and 10735030), Ningbo Natural Science Foundation (Grant Nos. 2010A610095, 2010A610103, and 2009B21003), and K.C. Wong Magna Fund in Ningbo University of China.

Cite this article: 

Hu Xiao(胡晓) and Li Biao(李彪) Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation 2011 Chin. Phys. B 20 050315

[1] Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 854502
[2] Chen S and Yi L 2005 Phys. Rev. E 71 016606
[3] Ponomarenko S A and Agrawal G P 2006 Phys. Rev. Lett.97 013901
[4] Xie B H and Jing H 2002 Chin. Phys. 11 115
[5] Huang G X 2004 Chin. Phys. 13 1866
[6] Mu A X, Zhou X Y and Xue J K 2008 Chin. Phys. B 17764
[7] Wang Z X, Ni Z G, Cong F Z, Liu X S and Chen L 2010Chin. Phys. B 19 113205
[8] Wang B, Tan L, L?u C H and Tan W T 2010 Chin. Phys.B 19 117402
[9] Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008Phys. Rev. A 78 023608
[10] Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett.102 185301
[11] Hu X H, Zhang X F, Zhao D, Luo H G and Liu W M 2009Phys. Rev. A 79 023619
[12] Yan Z Y, Chow K W and Malomed B A 2009 Chaos,Solitons and Fractals 42 3103
[13] Yan Z Y and Konotop V V 2009 Phys. Rev. E 80 036607
[14] Yan Z Y 2007 Phys. Lett. A 361 223
[15] He Z M, Wang D L, Zhang W X, Wang F J and Ding JW 2008 Chin. Phys. B 17 3640
[16] Xi Y D, Wang D L, He Z M and Ding J W 2009 Chin.Phys. B 18 939
[17] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999Rev. Mod. Phys. 71 463
[18] Yan Z Y and Hang C 2009 Phys. Rev. A 80 063626
[19] Muryshev A, Shlyapnikov G V, Ertmer W, Sengstock Kand Lewenstein M 2002 Phys. Rev. Lett. 89 110401
[20] Lou S Y, Huang G X and Ruan H Y 1991 J. Phys. A 24L587
[21] Fan E G 2000 Phys. Lett. A 277 212
[22] Li H M 2005 Chin. Phys. 14 251
[23] Chen Y, Li B and Zhang H Q 2004 Chin. Phys. 13 5
[24] Zhu J M and Ma Z Y 2005 Chin. Phys. 14 17
[25] Chen Y, Li B and Zhang H Q 2003 Chin. Phys. 12 940
[26] Chen Y and Li B 2004 Chaos, Solitons and Fractals 19977
[27] Li B, Chen Y, Xuan H N and Zhang H Q 2004 Appl. Math.Comput. 152 581
[28] Chen Y, Yan Z Y, Li B and Zhang H Q 2003 Chin. Phys.12 1977
[29] Zhi H Y, Zhao X Q and Zhang H Q 2005 Chin. Phys. 141296
[30] Li B 2007 Int. J. Mod. Phys. C 18 1187
[31] Zhang H P, Li B and Chen Y 2010 Chin. Phys. B 19060302
[32] Zhang H P, Li B, Chen Y and Huang F 2010 Chin. Phys.B 19 020201
[33] Tiesinga E, Williams C J, Julienne P S, Jones K M, LettP D and Phillips W D 1996 J. Res. Natl. Inst. Stand.Technol. 101 505
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[3] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[4] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[5] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[6] Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions
Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青). Chin. Phys. B, 2019, 28(10): 100203.
[7] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[8] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
[9] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[10] Periodic solitons in dispersion decreasingfibers with a cosine profile
Jia Ren-Xu (贾仁需), Yan Hong-Li (闫宏丽), Liu Wen-Jun (刘文军), Lei Ming (雷鸣). Chin. Phys. B, 2014, 23(10): 100502.
[11] Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions
Xu Gui-Qiong (徐桂琼). Chin. Phys. B, 2013, 22(5): 050203.
[12] Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波). Chin. Phys. B, 2013, 22(3): 030315.
[13] Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(10): 100501.
[14] Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrödinger equation with variable coefficients
Jing Jian-Chun (荆建春), Li Biao (李彪). Chin. Phys. B, 2013, 22(1): 010303.
[15] Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields
Etienne Wamba, Timolėon C. Kofanė, and Alidou Mohamadou . Chin. Phys. B, 2012, 21(7): 070504.
No Suggested Reading articles found!