Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010303    DOI: 10.1088/1674-1056/22/1/010303
GENERAL Prev   Next  

Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrödinger equation with variable coefficients

Jing Jian-Chun (荆建春), Li Biao (李彪)
Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo 315211, China
Abstract  In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrödinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.
Keywords:  (3+1)-dimensional nonlinear Schrödinger equation      extended symmetry      exact solution      symbolic computation  
Received:  30 March 2012      Revised:  25 June 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  11.30.-j (Symmetry and conservation laws)  
  02.70.Wz (Symbolic computation (computer algebra))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11041003), the Ningbo Natural Science Foundation, China (Grant No. 2009B21003), and K.C. Wong Magna Fund in Ningbo University, China.
Corresponding Authors:  Li Biao     E-mail:  biaolee2000@yahoo.com.cn

Cite this article: 

Jing Jian-Chun (荆建春), Li Biao (李彪) Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrödinger equation with variable coefficients 2013 Chin. Phys. B 22 010303

[1] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press) p. 540
[2] Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer-Verlag)
[3] Pitaevskii L and Stringari S 2003 Bose-Einstein Condensation (England: Oxford) p. 492
[4] Hu X H, Zhang X F, Zhao Dun, Luo H G and Liu W M 2009 Phys. Rev. A 79 023619
[5] Li Z D, Li Q Y, He P B, Liang J Q and Liu W M 2010 Phys. Rev. A 81 015602
[6] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[7] Yan Z Y and Chao H 2009 Phys. Rev. A 80 063626
[8] Yan Z Y, Konotop V V and Akhmediev N 2010 Phys. Rev. E 82 036610
[9] Yan Z Y and Konotop V V 2009 Phys. Rev. E80 036607
[10] Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008 Phys. Rev. A 78 023608
[11] Liu X B and Li B 2011 Chin. Phys. B 20 114219
[12] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
[13] Li B, Li Y Q and Chen Y 2009 Commun. Theor. Phys. 51 773
[14] Wang J, Li B and Ye W C 2010 Chin. Phys. B 19 030401
[15] Wang H and Li B 2011 Chin. Phys. B 20 040203
[16] Fei J X and Zheng C L 2012 Chin. Phys. B 21 070304
[17] Zheng C L and Li Y 2012 Chin. Phys. B 21 070305
[18] Hu X and Li B 2011 Chin. Phys. B 20 050315
[19] Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press)
[20] Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Soliton Theory and its Geometric Applications (Shanghai: Shanghai Scientific and Technical Press) (in Chinse)
[21] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[22] Bluman G W and Kumei S 1989 Symmetries and Differential Equation: Applied Mathematical Sciences 81 (Berlin: Springer)
[23] Olver P J 1993 Application of Lie Groups to Differential Equation (2nd edn.) (New York: Springer)
[24] Wazwaz A M 2009 Partial Differential Equations and Solitary Waves Theory (New York: Springer)
[25] Li Z B and Liu Y P 2002 Comput. Phys. Commun. 148 256
[26] Fan E 2000 Phys. Lett. A 277 212
[27] Li B, Chen Y and Zhang H Q 2002 J. Phys. A 35 8253
[28] Gao Y T and Tian B 2001 Comput. Phys. Commun. 133 158
[29] Fan E G 2003 J. Phys. A 36 7009
[30] Li B, Chen Y and Li Y Q 2008 Z. Naturforsch. 63a 763
[31] Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations (Berlin: Springer)
[32] Olver P J and Rosenau P 1986 Phys. Lett. A 114 107
[33] Wang J and Li B 2009 Chin. Phys. B 18 2109
[34] Yao R X, J X Y and Lou S Y 2009 Chin. Phys. B 18 1821
[35] Jia M 2007 Chin. Phys. 16 1534
[36] Ma H C and Lou S Y 2005 Chin. Phys. 14 1495
[37] Li J H and Lou S Y 2008 Chin. Phys. B 17 0747
[38] Lian Z J, Cheng L L and Lou S Y 2005 Chin. Phys. 14 1486
[39] Shi S Y and Fu J L 2011 Chin. Phys. B 20 021101
[40] Gagnon L and Wtntemitz P 1993 J. Phys. A: Math. Gen. 26 7061
[41] Mansfield E L, Reid G J and Clarkson P A 1998 Comput. Phys. Commun. 115 460
[42] Ruan H Y and Chen Y X 2003 J. Phys. Soc. Jpn. 72 1350
[43] Ruan H Y and Chen Y X 2004 Math. Methods Appl. Sci. 27 1077
[44] Ruan H Y, Li H J and Lou S Y 2005 J. Phys. A: Math. Gen. 38 3995
[45] Li Z F and Ruan H Y 2010 Chin. Phys. B 19 040201
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[7] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[8] Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions
Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青). Chin. Phys. B, 2019, 28(10): 100203.
[9] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[10] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[11] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[12] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[13] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[14] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[15] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
No Suggested Reading articles found!