Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047503    DOI: 10.1088/1674-1056/20/4/047503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated by spark plasma sintering

Sui Jie-Hea, Zhang Xina, Feng Xuea, Cai Weia, Tian Xiao-Huab
a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; b School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;College of Applied Science, Harbin University of Science and Technology, Harbin 150080, China
Abstract  The microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated using the spark plasma sintering method have been investigated. The results show that both the as-sintered and annealed sintered specimens exhibit typical martensitic transformation behaviours. The martensite of the sintered specimen after annealing exhibits a ferromagnetic nature. Moreover, study of the fracture surface indicates that the transgranular fracture contributes to the higher ductility of sintered Ni–Mn–Ga alloy. In addition, the transformation strain in sintered Ni–Mn–Ga alloy is studied for the first time.
Keywords:  ferromagnetic shape memory alloys      magnetic properties      martensitic transformations      spark plasma sintering  
Received:  18 November 2010      Revised:  04 December 2010      Published:  15 April 2011
PACS:  75.50.Cc (Other ferromagnetic metals and alloys)  
  81.30.Kf (Martensitic transformations)  
  64.70.kd (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50971052) and the Scientific Research Fund of Heilongjiang Provincial Education Department of China (Grant No. 11531059).

Cite this article: 

Tian Xiao-Hua, Sui Jie-He, Zhang Xin, Feng Xue, Cai Wei Microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated by spark plasma sintering 2011 Chin. Phys. B 20 047503

[1] Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[2] Murray S J, Marioni M A, Allen S M, O'Handley R C and Lograsso T A 2000 Appl. Phys. Lett. 77 886
[3] Wu G H, Yu C H and Meng L Q 1999 Appl. Phys. Lett. 75 2990
[4] Jiang C B, Liang T, Xu H B, Zhang M and Wu G H 2002 Appl. Phys. Lett. 81 2818
[5] Murray S J, Marioni M, Tello P G, Allen S M and O'Handley R C 2001 J. Magn. Magn. Mater. 226--230 945
[6] Pons J, Chernenko V A, Santamarta R and Cesari E 2000 Acta Mater. 48 3027
[7] Meng F B, Guo H J, Liu G D, Liu H Y, Dai X F, Luo H Z, Li Y X, Chen J L and Wu G H 2009 Chin. Phys. B 18 3031
[8] Chen D, Chen J D, Ma J Z, Shi D H, Xu G L and Yu B H 2009 Chin. Phys. B 18 744
[9] Sozinov A, Likhachev A A, Lanska N and Ullakko K 2002 Appl. Phys. Lett. 80 1746
[10] Gao L, Cai W, Liu A L and Zhao L C 2006 J. Alloys Compd. 425 314
[11] Tsuchiya K, Tsutsumi A, Ohtsuka H and Umemoto M 2004 Mater. Sci. Eng. A 378 370
[12] Guo S H, Zhang Y H, Zhao Z Q, Qi Y, Quan B Y and Wang X L 2004 J. Rare Earth 22 875
[13] Koho K, Söderberg O, Lanska N, Ge Y, Liu X, Straka L, Vimpari J, Heczko O and Lindroos V K 2004 Mater. Sci. Eng. A 378 384
[14] Wang H B, Chen F, Gao Z Y, Cai W and Zhao L C 2006 Mater. Sci. Eng. A 438--440 990
[15] Zhao Y, Taya M, Kang Y and Kawasaki A 2005 Acta Mater. 53 337
[16] Pérez-Sáez R B, Recarte V, Nó M L, Ruano O A and San Juan J 2000 Adv. Eng. Mater. 2 49
[17] Wang Z, Matsumoto M, Abe T, Oikawa K, Takagi T, Qiu J H and Tani J 1999 Mater. Trans. JIM 40 863
[18] Wang Z, Matsumoto M, Abe T, Oikawa K, Qiu J H, Takagi T and Tani J 1999 Mater. Trans. JIM 40 389
[19] Tian B, Chen F, Tong Y X, Li L, Zheng Y F and Liu Y 2010 J. Alloys Compd. 505 680 endfootnotesize
[1] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[2] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[3] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[4] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[7] Irradiation hardening behaviors of tungsten-potassium alloy studied by accelerated 3-MeV W2+ ions
Xiao-Liang Yang(杨晓亮), Long-Qing Chen(陈龙庆), Wen-Bin Qiu(邱文彬), Yang-Yi-Peng Song(宋阳一鹏), Yi Tang(唐毅), Xu-Dong Cui(崔旭东), Chang-Song Liu(刘长松), Yan Jiang(蒋燕), Tao Zhang(张涛), Jun Tang(唐军). Chin. Phys. B, 2020, 29(4): 046102.
[8] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[9] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[10] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[11] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[12] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[13] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[14] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[15] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
No Suggested Reading articles found!