Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040601    DOI: 10.1088/1674-1056/20/4/040601
GENERAL Prev   Next  

Effect of displacement on resistance and capacitance of polyaniline film

Khasan Sanginovich Karimova)b),Muhammad Tariq Saeeda), Fazal Ahmad Khalida),and Syed Abdul Moiz c)
a GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi, Khyber Pukhtoonkhawa, Pakistan; b Physical Technical Institute of Academy of Sciences, Rudaki Ave. 33, Dushanbe, 734025, Tajikistan; c Semiconductor Nano Processing Lab (SNPL), Department of Chemical and Material Engineering, Hanyang University, 1271 Sadong, Sangrok-gu, Ansan-Si, Geyonggi-do, 426-791, Korea
Abstract  This paper investigates the properties of displacement sensors based on polyaniline (PANI) films. About 1 wt% of PANI micropowder is mixed and stirred in a solution of 90 wt% water and 10 wt% alcohol at room temperature. The films of PANI are deposited from solution by drop-casting on Ag electrodes, which are preliminary deposited on glass substrates. The thicknesses of the PANI films are in the range of 20 μm-80 μm. A displacement sensor with polyaniline film as an active material is designed and fabricated. The investigations showed that, on average, the AC resistance of the sensor decreases by 2 times and the capacitance accordingly increases by 1.6 times as the displacement changes in the range of 0 mm-0.5 mm. The polyaniline is the only active material of the displacement sensor. The resistance and capacitance of the PANI changes under the pressure of spring and elastic rubber, and this pressure is created by the downward movement of the micrometer.
Keywords:  polyaniline      displacement      sensor      resistance and capacitance  
Received:  04 July 2010      Revised:  29 August 2010      Accepted manuscript online: 
PACS:  06.30.-k (Measurements common to several branches of physics and astronomy)  
  68.55.-a (Thin film structure and morphology)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  

Cite this article: 

Khasan Sanginovich Karimov, Muhammad Tariq Saeed, Fazal Ahmad Khalid, and Syed Abdul Moiz Effect of displacement on resistance and capacitance of polyaniline film 2011 Chin. Phys. B 20 040601

[1] Dally J W, Riley W F and McConnell K G 1993 Instrumentation for Engineering Measurements, 2nd edn. (New York: John Willey & Sons Inc.)
[2] Simpson C D 1996 Industrial Electronics (New Jersey: Prentice Hall Inc.)
[3] Ai M, Shimazoe M, Soeno K, Nishihara M, Yasukawa A and Kanda Y 1981--1982 Sens. Actuators 2 297
[4] Kristiansen K, McGuiggan P, Carver G, Meinhart C and Israelachvili J 2008 Langmuir 24(4) 1541
[5] Ferris S A, Ivison J M and Walker D 1970 J. Phys. E: Sci. Instrum. 3 639
[6] Bhadra S, Khastgir D, Singha N K and Lee J H 2009 Prog. Polymer Sci. 34 783
[7] Bejbouji H, Vignau L, Miane J L, Dang M T, Oualim El M, Harmouchi M and Mouhsen A 2010 Solar Energy Materials and Solar Cells 94 176
[8] Mallick K, Witcomb M, Erasmus R and Strydom A 2010 J. Appl. Polymer Sci. 116 1587
[9] Moiz S A, Ahmed M M and Karimov Kh S 2005 ETRI J. 27(3) 319
[10] Moiz S A, Karimov Kh S, Gohar N D 2004 Eurasian Chem. Technol. J. 6 201
[11] Moiz S A, Ahmed M M and Karimov Kh S 2005 Jpn. J. Appl. Phys. 44(3) 1199
[12] Irwin J D 1999 Basic Engineering Circuit Analysis, 6th edn. (New York: John Wiley & Sons)
[13] Epifanov GI and Moma Y A 1986 Solid State Electronics (Moscow: V Shkola)
[14] Croft A, Davison R and Hargreaves M 1993 Engineering Mathematics, a Modern Foundation for Electronic, Electrical and Control Engineers (Great Britain: Addison-Wesley Publishing Company)
[15] Brabec C J, Dyakonov V, Parisi J and Sariciftci N S 2003 it Organic Photovoltaics, Concepts and Realization (Berlin, Heidelberg: Springer-Verlag)
[16] Bottger H and Bryksin V V 1985 Hopping Conductions in Solids (Berlin: Akademie Verlag)
[17] Rittersma Z M 2002 Sens. Actuators A 96 196
[18] Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H and Sakurai T 2004 Proc. Natl. Acad. Sci. (PNAS) USA 101 9966
[19] Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H and Sakurai T 2005 Proc. Natl. Acad. Sci. (PNAS) USA 102 12321
[20] Irvine R G 1994 Operational Amplifiers Characteristics and Applications, 3rd edn. (Englewood Cliffs, New Jersey: Prentice Hall)
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[7] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[8] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[9] New insight into the mechanism of DNA polymerase I revealed by single-molecule FRET studies of Klenow fragment
Rokshana Parvin, Qi Jia(贾棋), Jianbing Ma(马建兵), Chunhua Xu(徐春华), Ying Lu(陆颖), Fangfu Ye(叶方富), and Ming Li(李明). Chin. Phys. B, 2022, 31(8): 088701.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[12] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[13] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[14] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[15] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
No Suggested Reading articles found!