Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 108401    DOI: 10.1088/1674-1056/20/10/108401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Three-dimensional global interconnect based on a design window

Qian Li-Bo(钱利波), Zhu Zhang-Ming(朱樟明), and Yang Yin-Tang(杨银堂)
Microelectronics School, Xidian University, Xi'an 710071, China
Abstract  Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.
Keywords:  three-dimensional integrated circuit      design window      wiring resource      bandwidth  
Received:  29 May 2011      Revised:  21 June 2011      Accepted manuscript online: 
PACS:  84.30.-r (Electronic circuits)  
  84.30.Bv (Circuit theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60725415 and 60676009) and the Natural Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX01034-002-001-005).

Cite this article: 

Qian Li-Bo(钱利波), Zhu Zhang-Ming(朱樟明), and Yang Yin-Tang(杨银堂) Three-dimensional global interconnect based on a design window 2011 Chin. Phys. B 20 108401

[1] Zhu Z M, Xiu L P and Yang Y T 2010 Chin. Phys. B 19 077802
[2] Dong G, Yang Y, Chai C C and Yang Y T 2010 Chin. Phys. B 19 110202
[3] Zhu Z M, Qian L B and Yang Y T 2009 Acta Phys. Sin. 58 2631 (in Chinese)
[4] Heidenreich J and Edelstein D 1998 Proceedings of IEEE International Interconnect Technology Conference, April 5-6, 1998 San Francisco, USA p. 151
[5] Banerjee K and Mehrotra A 2002 IEEE Trans. Electron Dev. 49 2001
[6] Zhu Z M, Qian L B and Yang Y T 2009 Chin. Phys. B 18 1188
[7] Agarwal A, Iskander C and Shankar R 2009 Journal of Engineering, Computing and Architecture 3 1423
[8] Ohashi K, Nishi K and Shimizu T 2009 Proceeding of the IEEE 97 1186
[9] Pavlidis V F and Friedman E G 2009 Three-Dimensional Integrated Circuit Design (Boston: Morgan Kaufmann) p. 166
[10] Davis J A, Vivek K D and Meindl J D 1998 IEEE Trans. Electron Dev. 45 580
[11] Joyner J D 2003 Opportunities and Limitations of Three-dimensional Integration for Interconnect Design (Atlanta: Georgia Institute of Technology, Electrical and Computer Engineering)
[12] Davis J A and Meindl J D 2003 Interconnect Technology and Design for Giga Scale Integration (Boston: Kluwer Academic) p. 160
[13] Zhu Z M, Wan D J and Yang Y T 2010 Chin. Phys. B 19 097803
[14] Joyner J W, Payman Z H and Meindl J D 2004 IEEE Trans. VLSI System 12 367
[15] Chen G Q and Friedman E G 2006 IEEE Trans. VLSI System 14 161
[16] Sakurai T 1993 IEEE Trans. Electron Dev. 40 118
[17] Wang X, Shan Z Y, Zhu Y T and Shao B X 2006 Acta Electron. Sin. 34 214 (in Chinese)
[18] Zhu Z M, Hao B T, Yang Y T and Li Y J 2010 Chin. Phys. B 19 127805
[19] Semiconductor Industry Association http://www.itrs.net
[20] Motoyoshi M 2009 Proceedings of the IEEE 97 43
[1] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[2] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[3] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[7] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[8] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[9] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[10] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[11] Parasitic effects of air-gap through-silicon vias in high-speed three-dimensional integrated circuits
Xiaoxian Liu(刘晓贤), Zhangming Zhu(朱樟明), Yintang Yang(杨银堂), Ruixue Ding(丁瑞雪), Yuejin Li(李跃进). Chin. Phys. B, 2016, 25(11): 118401.
[12] Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons
Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙). Chin. Phys. B, 2016, 25(11): 118403.
[13] Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance
Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛). Chin. Phys. B, 2015, 24(7): 078503.
[14] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[15] Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity
Chen Qing-Tao (陈庆涛), Huang Yong-Qing (黄永清), Fei Jia-Rui (费嘉瑞), Duan Xiao-Feng (段晓峰), Liu Kai (刘凯), Liu Feng (刘锋), Kang Chao (康超), Wang Jun-Chu (汪君楚), Fang Wen-Jing (房文敬), Ren Xiao-Min (任晓敏). Chin. Phys. B, 2015, 24(10): 108506.
No Suggested Reading articles found!