Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090503    DOI: 10.1088/1674-1056/19/9/090503
GENERAL Prev   Next  

Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)

Cheng Yuan-Minga, Kuang Feia, Zhou Pingb
a Institute of Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; b Key Laboratory of Network Control and Intelligent Instrument of Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  Based on the idea of tracking control and stability theory of fractional-order systems, a controller is designed to synchronize the fractional-order chaotic system with chaotic systems of integer orders, and synchronize the different fractional-order chaotic systems. The proposed synchronization approach in this paper shows that the synchronization between fractional-order chaotic systems and chaotic systems of integer orders can be achieved, and the synchronization between different fractional-order chaotic systems can also be realized. Numerical experiments show that the present method works very well.
Keywords:  chaotic systems of integer orders      synchronization      fractional-order chaotic systems      different fractional-order chaotic systems  
Received:  30 December 2009      Revised:  21 February 2010      Published:  15 September 2010
PACS:  0545  
Fund: Project supported by the Education Committee of Chongqing Province, China (Grant No. KJ090503).

Cite this article: 

Zhou Ping, Cheng Yuan-Ming, Kuang Fei Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems) 2010 Chin. Phys. B 19 090503

[1] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[2] Zhang H G, Liu D R and Wang Z L 2009 Controlling Chaos: Suppression, Synchronization and Chaotizcation (London: Springer Verlag)
[3] Ma T D, Zhang H G and Fu J 2009 Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 16 215
[4] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3751
[5] Kocarev L and Parlitz U 1995 Phys. Rev. Lett. 74 5208
[6] Murali K and Lakshmanan M 1998 Phys. Lett. A 241 303
[7] Zhou P 2007 Chin. Phys. 16 1263
[8] Ahmad W M and Sprott J C 2003 Chaos, Solitons and Fractals 16 339
[9] Tikhonov D A and Malchow H 2003 Chaos, Soliton and Fractals 16 287
[10] Wang F Q and Liu C X 2006 Acta Phys. Sin. 8 3922 (in Chinese)
[11] Wang X Y, He Y J and Wang M J 2009 Nonlinear Analysis Series A: Theory, Methods & Applications 71 6126
[12] Mohammad S T and Mohammad H 2007 Phys. Lett. A 367 102
[13] Mohammad S T and Mohammad H 2008 Physica A 387 57
[14] Yu Y G and Li H X 2008 Physica A 387 1393
[15] Li C G and Chen G R 2004 Chaos, Solitons and Fractals 22 549
[16] Li C P and Peng G J 2004 Chaos, Solitons and Fractals 22 443
[17] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[18] Ge Z M and Ou C Y 2007 Chaos, Solitons and Fractals 34 262
[19] Li C G and Chen G R 2004 Physica A 341 55
[20] Li C G, Liao X and Yu J B 2003 Phys. Rev. E 68 067203
[21] Zhou T S and Li C P 2005 Physica D 212 111
[22] Li C P, Deng W H and Xu D L 2006 Physica A 360 171
[23] Wang J W, Xiong X H and Zhang Y 2006 Physica A 370 279
[24] Yan J P and Li C P 2007 Chaos, Solitons and Fractals 32 725
[25] Li C P and Yan J P 2007 Chaos, Solitons and Fractals 32 751
[26] Peng G J and Jiang Y L 2008 Phys. Lett. A 372 3963
[27] Peng G J, Jiang Y L and Chen F 2008 Physica A 387 3738
[28] Wang X Y and He Y J 2008 Phys. Lett. A 372 435
[29] Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3351
[30] Matignon D 1996 IMACS, IEEE-SMC, Lille, France p963
[31] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[32] L"u J, Chen G and Zhang S 2002 Int. J. Bifur. Chaos 12 659
[33] Sheu L J, Chen H K, Chen J H and Tam L M 2007 Chaos, Solitons and Fractals 31 1203 endfootnotesize
[1] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[2] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[3] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[4] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[5] Explosive synchronization of multi-layer frequency-weighted coupled complex systems
Yan-Liang Jin(金彦亮), Lin Yao(姚林), Wei-Si Guo(郭维思), Rui Wang(王瑞), Xue Wang(王雪), Xue-Tao Luo(罗雪涛). Chin. Phys. B, 2019, 28(7): 070502.
[6] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[7] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[8] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[9] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[10] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[11] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[12] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[13] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[14] A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy. Chin. Phys. B, 2018, 27(10): 100501.
[15] Intra-layer synchronization in duplex networks
Jie Shen(沈洁), Longkun Tang(汤龙坤). Chin. Phys. B, 2018, 27(10): 100503.
No Suggested Reading articles found!