Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030313    DOI: 10.1088/1674-1056/19/3/030313
GENERAL Prev   Next  

Distributed quantum information processing via quantum dot spins

Liu Jun(刘军), Wang Qiong(王琼), Kuang Le-Man(匡乐满), and Zeng Hao-Sheng(曾浩生)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We propose a scheme to engineer a non-local two-qubit phase gate between two remote quantum-dot spins. Along with one-qubit local operations, one can in principal perform various types of distributed quantum information processing. The scheme employs a photon with linearly polarisation interacting one after the other with two remote quantum-dot spins in cavities. Due to the optical spin selection rule, the photon obtains a Faraday rotation after the interaction process. By measuring the polarisation of the final output photon, a non-local two-qubit phase gate between the two remote quantum-dot spins is constituted. Our scheme may has very important applications in the distributed quantum information processing.
Keywords:  quantum-dot spins      nonlocal quantum gates      polarised photon  
Received:  22 June 2009      Revised:  22 July 2009      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
  73.21.La (Quantum dots)  
Fund: Project supported by the National Fundamental Research Program of China (Grant No.~2007CB925204), the National Natural Science Foundation of China (Grant No.~10775048), the Key Project of Chinese Ministry of Education (Grant No.~206103), and the Construct Program of the National Key Discipline.

Cite this article: 

Liu Jun(刘军), Wang Qiong(王琼), Kuang Le-Man(匡乐满), and Zeng Hao-Sheng(曾浩生) Distributed quantum information processing via quantum dot spins 2010 Chin. Phys. B 19 030313

[1] Loss D and Di Vincenzo D P 1998 Phys. Rev. A 57 120
[2] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[3] Elzerman J M, Hanson R, Willems vanBeveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004Nature 430 431
[4] Fujisawa T, Austing D G, Tokura Y, Hirayama Y and Tarucha S 2002 Nature 419 278
[5] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin D M, Marcus C M, Hanson M P andGossard A C 2005 Science 309 2180
[6] Laird E A, Petta J R, Johnson A C, Marcus C M, Yacoby A, Hanson M P and Gossard A C 2006 Phys. Rev.Lett. 97 056801
[7] Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L Pand Vandersypen L M K 2006 Nature 442 766
[8] Imamoglu A, Awschalom D D, Burkard G, Di Vincenzo D P, Loss D,Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[9] Gupta J A, Knobel R, Samarth N and Awschalom D D 2001 Science 292 2458
[10] Burkard G, Loss D and Di Vincenzo D P 1999 Phys. Rev. B 59 2070
[11] Engel H A, Golovach V N, Loss D, Vandersypen L M K,Elzerman J M, Hanson R and Kouwenhoven L P 2004 Phys. Rev.Lett. 93 106804
[12] Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M,Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K2005 Phys. Rev. Lett. 94 196802
[13] Di Vincenzo D P 2000 Fortschr. Phys. 48 771
[14] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K1993 Phys. Rev. Lett. 701895
[15] Li H C, Lin X and Yang R C 2007 Chin. Phys. 16 624
[16] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[17] Cheng W W, Huang Y X, Li H and Liu T K 2007 Chin. Phys. 16 38
[18] Cao S, Fang M F, Liao X P and Zheng X J 2008 Chin. Phys. B 17 431
[19] Ekert A K 1991 Phys. Rev. Lett. 67 661
[20] Bennett C H, Di Vincenzo D P, Shor P W, Smolin J A,Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[Bennett C H, Di Vincenzo D P, Shor P W, Smolin J A, Terhal B M andWootters W K 2002 Phys. Rev. Lett. 88 099902(E)
[21] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
[22] Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303
[23] Hu C Y, Young A, O'Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307
[24] Simon C, Niquet Y M, Caillet X, Eymery J, Poizat J P and Gérard J M 2007 Phys. Rev. B 75 081302(R)
[25] Simon C and Irvine W T M 2003 Phys. Rev. Lett. 91 110405
[26] Leuenberger M N, Flatté M E and Awschalom D D 2005 Phys. Rev. Lett. 94 107401
[27] Childress L, Taylor J M, Sorensen A S and Lukin MD 2006 Phys. Rev. Lett. 96 070504
[ Childress L, Taylor J M,Sorensen A S and Lukin M D 2005 Phys. Rev. A 72 052330
[28] Hein M, Dür W, Eisert J, Raussendorf R, van Den Nest M and Briegel HJ 2006 quant-ph/0602096
[29] Cirac J I, Ekert A K, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249
[30] Svore K M, Terhal B M and Di Vincenzo D P 2005 Phys. Rev. A 72 022317
[31] An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
[32] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information ( Cambridge, England: Cambridge UniversityPress)
[33] Becker W, Bergmann A, Konig K and Tirlapur U 2001 Proc. SPIE Int. Soc. Opt. Eng. 4262 414
[34] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[35] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[36] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[37] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I1997 Phys. Rev. Lett. 79 3865
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[9] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[10] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[13] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[14] Optical scheme to demonstrate state-independent quantum contextuality
Ya-Ping He(何亚平), Deng-Ke Qu(曲登科), Lei Xiao(肖磊), Kun-Kun Wang(王坤坤), and Xiang Zhan(詹翔). Chin. Phys. B, 2022, 31(3): 030305.
[15] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
No Suggested Reading articles found!