Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(6): 02258    DOI: 10.1088/1674-1056/18/6/025
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Size dependence of biexciton binding energy in single InAs/GaAs quantum dots

Jia Ruia, Niu Zhi-Chuanb, Yang Fu-Huab, Dou Xiu-Mingc, Sun Bao-Quanc, Huang She-Songc, Ni Hai-Qiaoc
a Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; b SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; c SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  This paper studies the size dependence of biexciton binding energy in single quantum dots (QDs) by using atomic force microscopy and micro-photoluminescence measurements. It finds that the biexciton binding energies in the QDs show ``binding'' and ``antibinding'' properties which correspond to the large and small sizes of QDs, respectively. The experimental results can be well interpreted by the biexciton potential curve, calculated from the exciton molecular model and the Heitler--London method.
Keywords:  single quantum dots      exciton molecular model      biexcition binding energy      Heitler--London method  
Received:  27 June 2008      Revised:  27 November 2008      Published:  20 June 2009
PACS:  73.21.La (Quantum dots)  
  68.37.Ps (Atomic force microscopy (AFM))  
  71.35.-y (Excitons and related phenomena)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.55.Cr (III-V semiconductors)  
  78.67.Hc (Quantum dots)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos O69C041001 and 2007CB924904).

Cite this article: 

Dou Xiu-Ming, Sun Bao-Quan, Huang She-Song, Ni Hai-Qiao, Niu Zhi-Chuan, Yang Fu-Hua, Jia Rui Size dependence of biexciton binding energy in single InAs/GaAs quantum dots 2009 Chin. Phys. B 18 02258

[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[3] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[4] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[5] Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases
Feng Chi(迟锋), Zhen-Guo Fu(付振国), Liming Liu(刘黎明), Ping Zhang(张平). Chin. Phys. B, 2019, 28(10): 107305.
[6] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[7] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[8] Quantum frequency down-conversion of single photons at 1552 nm from single InAs quantum dot
Ben Ma(马奔), Si-Hang Wei(魏思航), Ze-Sheng Chen(陈泽升), Xiang-Jun Shang(尚向军), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(9): 097802.
[9] Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film
Feng Shan(单锋), Xiao-Yang Zhang(张晓阳), Jing-Yuan Wu(吴静远), Tong Zhang(张彤). Chin. Phys. B, 2018, 27(4): 047804.
[10] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[11] Capacitance extraction method for a gate-induced quantum dot in silicon nanowire metal-oxide-semiconductor field-effect transistors
Yan-Bing Xu(徐雁冰), Hong-Guan Yang(杨红官). Chin. Phys. B, 2017, 26(12): 127302.
[12] Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field
Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2017, 26(9): 097103.
[13] Optical anisotropy and the direction of polarization of exciton emissions in a semiconductor quantum dot:Effect of heavy- and light-hole mixing
Ranber Singh, Rajiv Kumar, Vikramjeet Singh. Chin. Phys. B, 2017, 26(8): 087303.
[14] Photon-mediated spin-polarized current in a quantum dot under thermal bias
Feng Chi(迟锋), Liming Liu(刘黎明), Lianliang Sun(孙连亮). Chin. Phys. B, 2017, 26(3): 037304.
[15] Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot
Jing-Lin Xiao(肖景林). Chin. Phys. B, 2017, 26(2): 027104.
No Suggested Reading articles found!