Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4622-4635    DOI: 10.1088/1674-1056/18/11/004
GENERAL Prev   Next  

Variable coefficient nonlinear systems derived from an atmospheric dynamical system

Tang Xiao-Yan(唐晓艳)a)†,Gao Yuan(高原)a), Huang Fei(黄菲)b), and Lou Sen-Yue(楼森岳) a)c)d)
a Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China; b Physical Oceanography Laboratory, Ocean University of China, Qingdao 266003, China; c Faculty of Science, Ningbo University, Ningbo 315211, China; School of Mathematics, Fudan University, Shanghai 200433, China
Abstract  Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schr?dinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-B?cklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes.
Keywords:  nonlinear inviscid barotropic nondivergent vorticity equation      variable coefficient equations      non-auto-B?cklund transformation  
Received:  25 July 2008      Revised:  26 March 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  92.60.-e (Properties and dynamics of the atmosphere; meteorology)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10735030, 10547124, 90503006 and 40305009), the National Basic Research Program of China (Grant Nos 2007CB814800 and 2005CB422301), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20070248120), Program for Changjiang Scholars and Innovative Research Team in University (Grant No IRT0734), the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No NCET-05-0591).

Cite this article: 

Tang Xiao-Yan(唐晓艳),Gao Yuan(高原), Huang Fei(黄菲), and Lou Sen-Yue(楼森岳) Variable coefficient nonlinear systems derived from an atmospheric dynamical system 2009 Chin. Phys. B 18 4622

[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[11] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[12] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!