Please wait a minute...
Chin. Phys., 2005, Vol. 14(12): 2590-2594    DOI: 10.1088/1009-1963/14/12/034
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Energy transfer probability in organic electrophosphorescence device with dopant

Dai Guo-Zhang, Li Hong-Jian, Pan Yan-Zhi, Dai Xiao-Yu, Xie Qiang
Department of Applied Physics, Hunan University, Changsha 410082, China
Abstract  Based on the energy transfer process from host to dopant in an organic electrophosphorescent (EP) device, the expression of energy transfer probability ($\eta )$ between the host (TPD) and guest (Ir(ppy)$_{3})$ EP systems was proposed. The results show that: ({1}) The rate of the triplet energy transfer ($K_{\rm HG}$ and $K_{\rm GH})$ increases exponentially with increasing donor-acceptor molecular distance ($R$), whereas decreases as the intermolecular distance ($R_{\rm HH})$ increases from 0.8 to 2.4 nm. Furthermore, $K_{\rm GH}$ changes more quickly than $K_{\rm HG.}$ ({2}) The energy transfer probability ($\eta )$ increases as $R$ reduces, and the $R_{\rm HH}$ changes can be safely neglected for $R<$0.9 nm. The situation changes for 0.9nm$ < R < 1.1$nm, $R_{\rm HH }$ ($<1$nm) plays an essential role when $\eta $ changes and increases with the latter. However, if $R > 1.1$nm, the transfer probability will be below zero. Here, the energy transfer principle may be less important, and the high electroluminescence (EL) quantum efficiency of phosphorescent system will be attributed to the direct electron-hole recombination in phosphorescent molecules. ({3}) The $\eta $ will increase when the Forster radius ($R_{0})$ increases or Gibb's energy decreases.
Keywords:  electrophosphorescence      energy transfer      triplet  
Received:  22 April 2005      Revised:  24 August 2005      Accepted manuscript online: 
PACS:  78.60.Fi (Electroluminescence)  
Fund: Project supported by the Excellent Youth Foundation of Hu'nan Province (Grant No 03JJY1008), and by the Science Foundation for Post-doctorate of China (Grant No 2004035083).

Cite this article: 

Dai Guo-Zhang, Li Hong-Jian, Pan Yan-Zhi, Dai Xiao-Yu, Xie Qiang Energy transfer probability in organic electrophosphorescence device with dopant 2005 Chin. Phys. 14 2590

[1] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[2] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[3] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[4] Vortex pinning and rectification effect in a nanostructured superconducting film with a square array of antidot triplets
An He(何安), Cun Xue(薛存), Youhe Zhou(周又和). Chin. Phys. B, 2018, 27(5): 057402.
[5] Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer
Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超). Chin. Phys. B, 2018, 27(1): 017802.
[6] Vibration-assisted coherent excitation energy transfer in a detuned dimer
Xin Wang(王信), Hao Chen(陈浩), Chen-yu Li(李晨宇), Hong-rong Li(李宏荣). Chin. Phys. B, 2017, 26(3): 037105.
[7] Phonon-assisted excitation energy transfer in photosynthetic systems
Hao Chen(陈浩), Xin Wang(王信), Ai-Ping Fang(方爱平), Hong-Rong Li(李宏荣). Chin. Phys. B, 2016, 25(9): 098201.
[8] Calculations of the dynamic dipole polarizabilities for the Li+ ion
Yong-Hui Zhang(张永慧), Li-Yan Tang(唐丽艳), Xian-Zhou Zhang(张现周), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(10): 103101.
[9] 2.0-μm emission and energy transfer of Ho3+/Yb3+ co-doped LiYF4 single crystal excited by 980 nm
Yang Shuo, Xia Hai-Ping, Jiang Yong-Zhang, Zhang Jia-Zhong, Jiang Dong-Sheng, Wang Cheng, Feng Zhi-Gang, Zhang Jian, Gu Xue-Mei, Zhang Jian-Li, Jiang Hao-Chuan, Chen Bao-Jiu. Chin. Phys. B, 2015, 24(6): 067802.
[10] Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors
Wu Shuang-Hong, Li Wen-Lian, Chen Zhi, Li Shi-Bin, Wang Xiao-Hui, Wei Xiong-Bang. Chin. Phys. B, 2015, 24(2): 028505.
[11] Concentration effect of the near-infrared quantum cutting of 1788-nm luminescence of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor
Chen Xiao-Bo, Li Song, Ding Xian-Lin, Yang Xiao-Dong, Liu Quan-Lin, Gao Yan, Sun Ping, Yang Guo-Jian. Chin. Phys. B, 2014, 23(8): 087809.
[12] Josephson current versus potential strength of the interface in ferromagnetic superconductors
Hamidreza Emamipour. Chin. Phys. B, 2014, 23(5): 057402.
[13] Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors
Cui Hang, Zhu Pei-Fen, Zhu Hong-Yang, Li Hong-Dong, Cui Qi-Liang. Chin. Phys. B, 2014, 23(5): 057801.
[14] A novel strong green phosphor:K3Gd(PO4)2:Ce3+, Tb3+ for a UV-excited white light-emitting-diode
Jiang Ting-Ming, Yu Xue, Xu Xu-Hui, Zhou Da-Cheng, Yu Hong-Ling, Yang Peng-Hui, Qiu Jian-Bei. Chin. Phys. B, 2014, 23(2): 028505.
[15] Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals
Hu Yue-Bo, Qiu Jian-Bei, Zhou Da-Cheng, Song Zhi-Guo, Yang Zheng-Wen, Wang Rong-Fei, Jiao Qing, Zhou Da-Li. Chin. Phys. B, 2014, 23(2): 024205.
No Suggested Reading articles found!