Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037105    DOI: 10.1088/1674-1056/26/3/037105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vibration-assisted coherent excitation energy transfer in a detuned dimer

Xin Wang(王信)1,2, Hao Chen(陈浩)1, Chen-yu Li(李晨宇)1, Hong-rong Li(李宏荣)1,2
1 School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
2 CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan
Abstract  

The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown.

Keywords:  excitation energy transfer      high-energy intramolecular vibrational motion      dynamically resonant coherent transfer  
Received:  05 August 2016      Revised:  21 November 2016      Accepted manuscript online: 
PACS:  71.35.-y (Excitons and related phenomena)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  63.50.-x (Vibrational states in disordered systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11174233).

Corresponding Authors:  Hong-rong Li     E-mail:  hrli@mail.xjtu.edu.cn

Cite this article: 

Xin Wang(王信), Hao Chen(陈浩), Chen-yu Li(李晨宇), Hong-rong Li(李宏荣) Vibration-assisted coherent excitation energy transfer in a detuned dimer 2017 Chin. Phys. B 26 037105

[1] Levi F, Mostarda S, Rao F and Mintert F 2015 Rep. Prog. Phys 78 082001
[2] Renger T, May V and Kühn O 2001 Phys. Rep. 343 137
[3] Roden J, Schulz G, Eisfeld A and Briggs J 2009 J. Chem. Phys. 131 044909
[4] Renger T, Madjet M E, Knorr A and Müh F 2011 J. Plant Physiol. 168 1497
[5] Hossein-Nejad H, Olaya-Castro A and Scholes G D 2012 J. Chem. Phys. 136 024112
[6] Ishizaki A, Calhoun T R, Schlau-Cohen G S and Fleming G R 2010 Phys. Chem. Chem. Phys. 12 7319
[7] Scholes G D, Fleming G R, Olaya-Castro A and van Grondelle R 2011 Nat. Chem. 3 763
[8] Olaya-Castro A and Scholes G D 2011 Int. Rev. Phys. Chem. 30 49
[9] Collini E 2013 Chem. Soc. Rev. 42 4932
[10] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[11] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[12] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2013 J. Chem. Phys. 131 105106
[13] Huelga S F and Plenio M B 2013 Contemp. Phys. 54 181
[14] Wendling M, Pullerits T, Przyjalgowski M A, Vulto S I E, Aartsma T J, Van Grondelle R and Van Amerongen H 2000 J. Phys. Chem. B 104 5825
[15] Rätsep M, Pieper J, Irrgang K D and Freiberg A 2008 J. Phys. Chem. B 112 110
[16] Womick J M and Moran A M 2009 J. Phys. Chem. B 113 15747
[17] Womick J M and Moran A M 2011 J. Phys. Chem. B 115 1347
[18] Jankowiak R, Reppert M, Zazubovich V, Pieper J and Reinot T 2011 Chem. Rev. 111 4546
[19] West B A, Womick J M, McNeil L E, Tan K J and Moran A M 2011 J. Phys. Chem. B 115 5157
[20] Eisenmayer T J, de Groot H J M, van de Wetering E, Neugebauer J and Buda F 2012 J. Phys. Chem. Lett. 3 694
[21] Richards G H, Wilk K E, Curmi P M G, Quiney H M and Davis J A 2012 J. Phys. B 45 154015
[22] Doust A B, Marai C N J, Harrop S J, Wilk K E, Curmi P M G and Scholes G D 2004 J. Mol. Biol. 344 135
[23] Yang M 2006 J. Mol. Spectrosc. 239 108
[24] Kolli A, O'Reilly E J, Scholes G D and Olaya-Castro A 2012 J. Chem. Phys. 137 174109
[25] Davydov A S 1973 J. Theor. Biol. 38 559
[26] Guerreschi G G, Cai J M, Popescu S and Briegel H J 2012 New J. Phys. 14 053043
[27] Irish E K, G'omezbombarelli R and Lovett B W 2014 Phys. Rev. A 90 012510
[28] Song W, Huang Y S and Cao Z L 2015 Chin. Phys. Lett. 32 088701
[29] Chen H, Wang X, Fang A P and Li H R 2016 Chin. Phys. B 25 98201
[30] Ritschel G, Roden J, Strunz W T and Eisfeld A 2011 New J. Phys. 13 113034
[31] Turner D B, Dinshaw R, Lee K K, Belsley M S, Wilk K E, Curmi P M G and Scholes G D 2012 Phys. Chem. Chem. Phys. 14 4857
[32] Hay S and Scrutton N S 2012 Nat. Chem. 4 161
[33] Wilk K E, Harrop S J, Jankova L, Edler D, Keenan G, Sharples F, Hiller R G and Curmi P M 1999 Proc. Natl. Acad. Sci. USA 96 8901
[34] Olaya-Castro A, Lee C F, Olsen F F and Johnson N F 2007 Phys. Rev. B 78 085115
[35] Chin A W, Prior J, Rosenbach R, Caycedo-Soler F, Huelga S F and Plenio M B 2013 Nat. Phys. 9 113
[36] Huelga S F and Plenio M B 2014 Nat. Phys. 10 621
[37] Yang S, Xu D Z, Song Z and Sun C P 2010 J. Chem. Phys. 132 234501
[38] Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E and Wen J 2010 Proc. Natl. Acad. Sci. USA 107 12766
[39] Scully M O and Zubairy M S, 1997 Quantum Optics (Cambridge: Cambridge University Press) p. 199
[40] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[41] Engel G S, Calhoun T R, Read E L and Ahn T 2007 Nature 446 782
[42] James D F V 2000 Fortschritte Der Physik 48 823
[1] Phonon-assisted excitation energy transfer in photosynthetic systems
Hao Chen(陈浩), Xin Wang(王信), Ai-Ping Fang(方爱平), Hong-Rong Li(李宏荣). Chin. Phys. B, 2016, 25(9): 098201.
No Suggested Reading articles found!