Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054203    DOI: 10.1088/1674-1056/28/5/054203

Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich

Shuai Zhao(赵帅)1, Fangrong Hu(胡放荣)1, Xinlong Xu(徐新龙)2, Mingzhu Jiang(江明珠)1, Wentao Zhang(张文涛)1, Shan Yin(银珊)1, Wenying Jiang(姜文英)1
1 Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China;
2 Nanobiophotonic Center, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, and Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
Abstract  We experimentally demonstrate an electrically triggered terahertz (THz) dual-band tunable band-pass filter based on Si3N4-VO2-Si3N4 sandwich-structured hybrid metamaterials. The insulator-metal phase transition of VO2 film is induced by the Joule thermal effect of the top metal layer. The finite-integration-time-domain (FITD) method and finite element method (FEM) are used for numerical simulations. The sample is fabricated using a surface micromachining process, and characterized by a THz time-domain-spectrometer (TDS). When the bias current is 0.225 A, the intensity modulation depths at two central frequencies of 0.56 THz and 0.91 THz are about 81.7% and 81.3%, respectively. This novel design can achieve dynamically electric-thermo-optic modulation in the THz region, and has potential applications in the fields of THz communications, imaging, sensing, and astronomy exploration.
Keywords:  tunable band-pass filter      hybrid metamaterials      terahertz      vanadium dioxide (VO2)  
Received:  21 December 2018      Revised:  17 January 2019      Accepted manuscript online: 
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  84.30.Vn (Filters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574059, 61565004, and 11774288), the National Technology Major Special Project, China (Grant No. 2017ZX02101007-003), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFDA139039 and 2017GXNSFBA198116), the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument, China (Grant No. YQ16101), and the Innovation Project of Guangxi Graduate Education, China (Grant Nos. 2018YJCX70, 2018YJCX67, and 2018YJCX74).
Corresponding Authors:  Fangrong Hu     E-mail:

Cite this article: 

Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英) Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich 2019 Chin. Phys. B 28 054203

[1] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[2] Kante B, de Lustrac A, Lourtioz J M and Burokur S N 2008 Opt. Express 16 9191
[3] Silveirinha M G, Medeiros C R, Fernandes C A and Costa J R 2010 Phys. Rev. B 81 033101
[4] Olivares I, Sanchez L, Parra J, Larrea R, Griol A, Menghini M, Homm P, Jang L W, van Bilzen B, Seo J W, Locquet J P and Sanchis P 2018 Opt. Express 26 12387
[5] Song Z Y, Wang K, Li J W and Liu Q H 2018 Opt. Express 26 7148
[6] Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S and Zhang H W 2018 Adv. Opt. Mater. 6 1700620
[7] Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[8] Lan F, Yang Z Q, Qi L M, Gao X and Shi Z J 2014 Opt. Lett. 39 1709
[9] Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909
[10] Deng L, Li D Z, Liu Z L, Meng Y H, Guo X N and Tian Y H 2017 Chin. Phys. B 26 024209
[11] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[12] Hu F R, Xu X, Li P, Xu X L and Wang Y 2017 Chin. Phys. B 26 074219
[13] Zhu Y H, Vegesna S, Zhao Y, Kuryatkov V, Holtz M, Fan Z Y, Saed M and Bernussi A A 2013 Opt. Lett. 38 2382
[14] Park D J, Shin J H, Park K H and Ryu H C 2018 Opt. Express 26 17397
[15] Hogue M N F, Karaoglan-Bebek G, Holtz M, Bernussi A A and Fan Z Y 2015 Opt. Commun. 350 309
[16] Pashkin A, Kuebler C, Ehrke H, Lopez R, Halabica A, Haglund R F Jr., Huber R and Leitenstorfer A 2011 Phys. Rev. B 83 195120
[17] Eaton M, Catellani A and Calzolari A 2018 Opt. Express 26 5342
[18] Sanphuang V, Ghalichechian N, Nahar N K and Volakis J L 2016 IEEE Trans. Terahertz Sci. Technol. 6 583
[19] Zhou G C, Dai P H, Wu J B, Jin B B, Wen Q Y, Zhu G H, Shen Z, Zhang C H, Kang L, Xu W W, Chen J and Wu P H 2017 Opt. Express 25 17322
[20] Han C R, Parrott E P J, Humbert G, Crunteanu A and Pickwell-MacPherson E 2017 Sci. Rep. 7 12725
[21] Wang S X, Kang L and Werner D H 2017 Sci. Rep. 7 4326
[22] Zhu Y H, Zhao Y, Holtz M, Fan Z and Bernussi A A 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 2373
[23] Hu F R, Zhang L H, Xu X L, Wang Y E, Zou T B and Zhang W T 2015 Opt. Quan. Electron. 47 2867
[24] Azad A K, Taylor A J, Smirnova E and O'Hara J F 2008 Appl. Phys. Lett. 92 011119
[25] COMSOL Inc., [2019-01-17]
[26] Haynes W M 2014 CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press)
[27] Gopalakrishnan G, Ruzmetov D and Ramanathan S 2009 J. Mater. Sci. 44 5345
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!