Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116802    DOI: 10.1088/1674-1056/24/11/116802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Residual occurrence and energy property of proteins in HNP model

Jiang Zhou-Ting (姜舟婷)a, Dou Wen-Hui (窦文辉)a, Shen Yu (沈瑜)b, Sun Ting-Ting (孙婷婷)c, Xu Peng (徐鹏)a
a Department of Applied Physics, China Jiliang University, Hangzhou 310018, China;
b Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
c College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract  Four categories of globular proteins, including all-α, all-β, α +β, and α/β types, are simplified as the off-lattice HNP model involving the secondary-structural information of each protein. The propensity of three types of residues, i.e., H, N, and P to form a secondary structure is investigated based on 146 protein samples. We find that P residues are easy to form α -helices, whereas H residues have a higher tendency to construct β-sheets. The statistical analysis also indicates that the occurrence of P residues is invariably higher than that of H residues, which is independent of protein category. Changes in bond-and non-bonded potential energies of all protein samples under a wide temperature range are presented by coarse-grained molecular dynamics (MD) simulation. The simulation results clearly show a linear relationship between the bond-stretching/bending potential energy and the reduced temperature. The bond-torsional and non-bonded potential energies show distinct transitions with temperature. The bond-torsional energy increases to the maximum and then decreases with the increase of temperature, which is opposite to the change in non-bonded potential energy. The transition temperature of non-bonded potential energy is independent of the protein category, while that of bond-torsional energy is closely related to the protein secondary structure, i.e., α -helix or β-sheet. The quantitatively bonded-and semi-quantitatively non-bonded potential energy of 24 α +β and 23 α/β protein samples are successfully predicted according to the statistical results obtained from MD simulations.
Keywords:  HNP model      molecular dynamics simulation      residue hydrophobicity  
Received:  04 May 2015      Revised:  03 July 2015      Accepted manuscript online: 
PACS:  68.35.bm (Polymers, organics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21204078, 11304282, and 11202201) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY12B04003).
Corresponding Authors:  Jiang Zhou-Ting     E-mail:  z.jiang@cjlu.edu.cn

Cite this article: 

Jiang Zhou-Ting (姜舟婷), Dou Wen-Hui (窦文辉), Shen Yu (沈瑜), Sun Ting-Ting (孙婷婷), Xu Peng (徐鹏) Residual occurrence and energy property of proteins in HNP model 2015 Chin. Phys. B 24 116802

[1] Bratko D and Blanch H W;2001 J. Chem. Phys. 114 561
[2] Anfinsen C B;1973 Science 181 223
[3] Harrison P M, Chan H S, Prusiner S B and Cohen F E;1999 J. Mol. Biol. 286 593
[4] Asherie N, Pande J, Lomakin A, Ogun O, Hanson S R A, Smith J B and Benedek G B;1998 Biophys. Chem. 75 213
[5] Jiang T Z, Cui Q H, Shi G H and Ma S D;2003 J. Chem. Phys. 119 4592
[6] Ou-Yang Z C, Su Z B and Wang C L;1997 Phys. Rev. Lett. 78 4055
[7] Li T, Jiang Z T, Yan D D and Nies E;2010 Polymer 51 5612
[8] Chen J X, Mao J W, Thakur S, Xu J R and Liu F Y;2011 J. Chem. Phys. 135 094504
[9] Chen J X, Zhu J X, Ma Y Q and Cao J S;2014 Europhys. Lett. 106 18003
[10] Sakae Y and Okamoto Y;2010 Mol. Simulat. 36 302
[11] Bond P J and Sansom M S P;2006 J. Am. Chem. Soc. 128 2697
[12] Li C and Strachan A;2014 J. Polym. Sci. B 53 103
[13] Chai A H, Ran S Y, Zhang D, Jiang Y W, Yang G C and Zhang L X;2013 Chin. Phys. B 22 098701
[14] Yang J S, Huang D H, Cao Q L, Li Q, Wang L Z and Wang F H;2013 Chin. Phys. B 22 098101
[15] Ferreon A C M and Deniz A A;2011 BBA-Proteins Proteom. 1814 1021
[16] O’Connell T M, Wang L, Tropsha A and Hermans J;1999 Proteins 36 407
[17] Vettorel T, Grosberg A Y and Kremer K;2009 Phys. Biol. 6 025013
[18] Faccioli P, Sega M, Pederiva F and Orland H;2006 Phys. Rev. Lett. 97 108101
[19] Jiang Z T, Zhang L X, Sun T T and Wu T Q;2009 Chin. Phys. B 18 4580
[20] Jiang Z T, Zhang L X, Chen J, Xia A and Zhao D;2002 Polymer 43 6037
[21] Dill K A;1985 Biochemistry 24 1501
[22] Yue K, Fiebig K M, Thomas P D, Chan H S, Shackhnovich E I and Dill K A;1995 Proc. Natl. Acad. Sci. USA 92 325
[23] Wust T and Landau D P;2012 J. Chem. Phys. 137 064903
[24] Sangha A K and Keyes T;2010 J. Phys. Chem. B 114 16908
[25] Regan L and DeGrado W F;1988 Science 241 976
[26] Miyazawa S and Jernigan R L;1996 J. Mol. Biol. 256 623
[27] Gutin A M, Abkevich V I and Shakhnovich E I;1996 Phys. Rev. Lett. 77 5433
[28] Taneri S;2008 Int. J. Mod. Phys. C 19 749
[29] Levitt M and Chothia C;1976 Nature 261 552
[30] Murzin A G, Brenner S E, Hubbard T and Chothia C 1995 J. Mol. Biol. 247 536
[31] Miyazawa S and Jernigan R L;1985 Macromolecules 18 534
[32] Friedel M, Sheeler D J and Shea J E;2003 J. Chem. Phys. 118 8106
[33] Jiang Z T, Xu P and Sun T T;2012 Chinese J. Polym. Sci. 30 45
[34] Nose S;1984 J. Chem. Phys. 81 511
[35] Hoover W G;1985 Phys. Rev. A 31 1695
[36] Pace C N and Scholtz J M;1998 Biophys. J. 75 422
[37] Best R B, de Sancho D and Mittal J;2012 Biophys. J. 102 1462
[38] Minor D L and Kim P S 1993 Nature 367 660
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!