Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094209    DOI: 10.1088/1674-1056/ade663
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical and computational feasibility of femtosecond laser multifilament transverse structures reconstruction via circular-scanning-based photoacoustic tomography

Qingwei Zeng(曾庆伟)1,2, Lei Liu(刘磊)1,2,†, Shuai Hu(胡帅)1,2,‡, and Shulei Li(李书磊)1,2
1 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China;
2 Key Laboratory of High Impact Weather (Special), China Meteorological Administration, Changsha 410074, China
Abstract  We theoretically investigate the feasibility of reconstructing the transverse structures of femtosecond laser filaments in air by photoacoustic tomography. To simulate the emission and transmission of filament-induced ultrasonic signals more truly, a series of experimentally recorded cross-sectional images are used to simulate the initial pressure rise from multiple filaments (MFs). The aperture size and sensitivity of the detector was incorporated into the reconstruction algorithm. The results show that frequency of acoustic signals induced by MFs with maximum volumetric energy density $\sim 100$ kJ/m$^{3}$ is about 2 MHz below. The initial spatial distribution of optical filaments can be clearly reconstructed with the back projection based algorithm. We recommend a PAT system with transducers of a lower central frequency and a stronger apodization working at a longer scanning radius can be used in photoacoustic image reconstruction of femtosecond laser multifilaments. This study demonstrates the feasibility of using photoacoustic tomography to reconstruct femtosecond multifilament images, which is helpful for studying the complex dynamic processes of multifilament and multifilament manipulation and is also valuable for the remote applications of laser filaments.
Keywords:  femtosecond laser filaments      transverse structures      energy deposition      photoacoustic tomography      ultrasonic transducer      back projection  
Received:  30 December 2024      Revised:  06 May 2025      Accepted manuscript online:  20 June 2025
PACS:  42.55.-f (Lasers)  
  42.65.-k (Nonlinear optics)  
  44.05.+e (Analytical and numerical techniques)  
  43.60.+d (Acoustic signal processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 42105176) and the National University of Defense Technology Independent Research Project (Grant No. ZK21-40).
Corresponding Authors:  Lei Liu, Shuai Hu     E-mail:  liulei17c@nudt.edu.cn;hushuai2012@hotmail.com

Cite this article: 

Qingwei Zeng(曾庆伟), Lei Liu(刘磊), Shuai Hu(胡帅), and Shulei Li(李书磊) Theoretical and computational feasibility of femtosecond laser multifilament transverse structures reconstruction via circular-scanning-based photoacoustic tomography 2025 Chin. Phys. B 34 094209

[1] Couairon A and Mysyrowicz A 2007 Phys. Rep. 441 47
[2] Durand M, Houard A, Prade B and Mysyrowicz A 2013 Opt. Express 21 26836
[3] Huang X D, Zhang M, Deng L H, Pang S B, Liu K and Xu H L 2022 Chin. Phys. B 31 097801
[4] Wolf J P 2018 Rep. Prog. Phys. 81 026001
[5] Châteauneuf M, Payeur S, Dubois J and Kieffer J C 2008 Appl. Phys. Lett. 92 091104
[6] Zhang Z, Lu X, LiangWX, Hao Z Q, ZhouML,Wang Z H and Zhang J 2009 Chin. Phys. B 18 1136
[7] Schimmel G, Produit T, Mongin D and Kasparian J 2018 Optica 5 1338
[8] Shang B P, Zhang Z, Zhang N, Qi P F and Guo J W 2024 IEEE Photon. Technol. Lett. 36 512
[9] Wei Y X, Wang T J, long J, Yin F K and Ding X Y 2023 Opt. Express 31 6938
[10] Méchain G, Couairon A and André Y B 2004 Appl. Phys. B 79 379
[11] Chen Y P, Théberge F, Kosareva O, Panov N, Kandidov V P and Chin S L 2007 Opt. Lett. 32 3477
[12] Xu S Q, Sun X D, Zeng B, Chu W, Zhao J Y and Liu W W 2012 Opt. Express 20 299
[13] Fedorov V Y and Tzortzakis S 2020 Light: Science & Applications 9 186
[14] Wahlstrand J K, Jhajj N, Rosenthal E W, Zahedpour S and Milchberg A H M 2014 Opt. Lett. 39 1290
[15] Arantchouk L, Honnorat B, Thouin E, Point G, Mysyrowicz A and Houard A 2016 Appl. Phys. Lett. 108 173501
[16] Yu J, Mondelain D, Kasparian J and Salmon E 2003 Appl. Opt. 42 1
[17] Point G, Thouin E, Mysyrowicz A and Houard A 2016 Opt. Express 24 6271
[18] Rosenthal E W, Jhajj N, larkin I, Zahedpour S, Wahlstrand J K and Milchberg A H M 2016 Opt. Lett. 41 3908
[19] Larkin I, Griff-McMahon J, Schweinsberg A, Goffin A, Valenzuela A and Milchberg H M 2020 Opt. Lett. 45 2518
[20] Uryupina D S, Bychkov A S, Pushkarev D V, Mitina E V, Savel’ev A B, Kosareva O G, Panov N A and Karabutov A A 2016 Laser Phys. Lett. 13 095401
[21] Kolesik M and Moloney J 2004 Opt. Lett. 29 590
[22] Wang L V and Hu S 2012 Science 335 1458
[23] Cheng Y H, Wahlstrand J K, Jhajj N and Milchberg H M 2013 Opt. Express 21 4740
[24] Treeby B E, Jaros J, Rendell A P and Cox B T 2012 Journal of the Acoustical Society of America 131 4324
[25] Warbal P, Pramanik M and Saha R K 2019 J. Opt. Soc. Am. A 36 245
[26] Pramanik M 2014 J. Opt. Soc. Am. A 31 621
[27] Luo X F, Jiang J S,Wu H L, Li M H andWang B 2023 Ultrasonics 133 107042
[28] Xu Y, Xu M H and Wang L H 2002 IEEE Transactions on Medical Imaging 21 829
[29] Xu M H and Wang L H V 2005 Phys. Rev. E 71 16706
[30] Omidi P, Yip L C M, Rascevska E, Diop M and Carson J J L 2022 Photoacoustics 28 100404
[31] Treeby B E, Wise E S, Kuklis F, Jaros J and Cox B 2020 Journal of the Acoustical Society of America 148 2288
[32] Potemkin F V, Mareev E I, Rumiantsev B V, Bychkov A S, Karabutov A A, Cherepetskaya E B and Makarov V A 2018 J. Phys. Conf. Ser. 1141 012060
[33] Mejean G, Kasparian J, Yu J, Salmon E, Frey S, Wolf J P, Skupin S, Vincotte A, Nuter R, Champeaux S and Berge L 2005 Phys. Rev. E 72 026611
[34] LiuW, Théberge F, Arevalo E, Gravel J F, Becker A and Chin S L 2005 Opt. Lett. 30 2602
[35] Bychkov A S, Cherepetskaya E B, Karabutov A A and Makarov V A 2016 Laser Phys. Lett. 13 085401
[36] Potemkin F V, Mareev E I, Rumiantsev B V, Bychkov A S and Karabutov A A 2018 Laser Phys. Lett. 15 075403
[37] Shang B P, Zhang Z, Zhang N, Qi P F, Guo JW, Tao S S, Lin L and Liu W W 2024 IEEE Photon. Technol. Lett. 36 512
[38] Shang B P, Qi P F, Guo J W, Zhang Z and Guo L J 2023 Optics and laser technology 157 108636
[39] Rumiantsev B V, Mareev E I, Bychkov A S, Karabutov A A and Cherepetskaya E B 2021 Appl. Phys. Lett. 118 011109
[40] Venkataramanan A K,Wu C Y, Bovik A C, Katsavounidis I and Shahid Z 2021 IEEE Access 9 28872
[1] Enhancement of photoacoustic tomography in the tissue with speed-of-sound variance using ultrasound computed tomography
Cheng Ren-Xiang (程任翔), Tao Chao (陶超), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(11): 114301.
[2] Effects of size and arrangement of virtual transducer on photoacoustic tomography
Wang Shao-Hua (王少华), Tao Chao (陶超), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2013, 22(7): 074303.
[3] Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces
Ji Wei-Jie (姬伟杰), Tong Chuang-Ming (童创明). Chin. Phys. B, 2013, 22(2): 020301.
[4] Influence of limited-view scanning on depth imaging of photoacoustic tomography
Wu Dan(吴丹), Tao Chao(陶超), Liu Xiao-Jun(刘晓峻), and Wang Xue-Ding(王学鼎) . Chin. Phys. B, 2012, 21(1): 014301.
[5] Properties study of LiNbO3 lateral field excited device working on thickness extension mode
Zhang Zhi-Tian(张志甜), Zhang Chao(张超), Wang Wen-Yan(王文炎), Ma Ting-Feng(马廷锋), Liu Yan(刘岩), and Feng Guan-Ping(冯冠平). Chin. Phys. B, 2010, 19(9): 097701.
[6] The penetration, diffusion and energy deposition of high-energy photon
Luo Zheng-Ming (罗正明), Gou Cheng-Jun (勾成俊), Wolfram Laub. Chin. Phys. B, 2003, 12(7): 803-808.
No Suggested Reading articles found!