Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 127302    DOI: 10.1088/1674-1056/ade1c2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Sol-gel synthesis and nonvolatile resistive switching behaviors of wurtzite phase ZnO nanofilms

Zhi-Qiang Yu(余志强)1,2,4,†, Jin-Hao Jia(贾金皓)1, Mei-Lian Ou(欧梅莲)1, Tang-You Sun(孙堂友)3,4,‡, and Zhi-Mou Xu(徐智谋)4
1 School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;
2 School of Computer and Information Technology, Hohhot Minzu College, Hohhot 010051, China;
3 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China;
4 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A facile sol-gel method and heating treatment process have been reported to synthesize the wurtzite phase ZnO nanofilms with the preferential growth orientation along the [001] direction on the FTO substrates. The as-prepared wurtzite phase ZnO nanofilms-based memristor with the W/ZnO/FTO sandwich has demonstrated a reliable nonvolatile bipolar resistive switching behaviors with an ultralow set voltage of about +3 V and reset voltage of approximately -3.6 V, high resistive switching ratio of more than two orders of magnitude, good resistance retention ability (up to 104 s), and excellent durability. Furthermore, the resistive switching behavior in the low-resistance state is attributed to the Ohmic conduction mechanism, while the resistive switching behavior in the high-resistance state is controlled by the trap-modulated space charge limited current (SCLC) mechanism. In addition, the conductive filament model regulated by the oxygen vacancies has been proposed, where the nonvolatile bipolar resistive switching behaviors could be attributed to the formation and rupture of conductive filaments in the W/ZnO/FTO memristor. This work demonstrates that the as-prepared wurtzite phase ZnO nanofilms-based W/ZnO/FTO memristor has promising prospects in future nonvolatile memory applications.
Keywords:  sol-gel      ZnO nanofilms      memristor      nonvolatile      oxygen vacancies  
Received:  10 April 2025      Revised:  11 May 2025      Accepted manuscript online:  06 June 2025
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  72.60.+g (Mixed conductivity and conductivity transitions)  
  72.80.Ga (Transition-metal compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62341305, 61805053, and 22269002) and the Science and Technology Project of Guangxi Zhuang Autonomous Region, China (Grant Nos. AD19110038 and AD21238033).
Corresponding Authors:  Zhi-Qiang Yu, Tang-You Sun     E-mail:  zhiqiangyu@alumni.hust.edu.cn;suntangyou@guet.edu.cn

Cite this article: 

Zhi-Qiang Yu(余志强), Jin-Hao Jia(贾金皓), Mei-Lian Ou(欧梅莲), Tang-You Sun(孙堂友), and Zhi-Mou Xu(徐智谋) Sol-gel synthesis and nonvolatile resistive switching behaviors of wurtzite phase ZnO nanofilms 2025 Chin. Phys. B 34 127302

[1] Persson K M, Ram M S, Kilpi O P, Borg M and Wernersson L E 2020 Adv. Electron. Mater. 6 2000154
[2] Alagoz H S, Chow K H and Jung J 2019 Appl. Phys. Lett. 114 163502
[3] Manning H G, Biswas S, Holmes J D and Boland J J 2017 ACS Appl. Mater. Interfaces 9 38959
[4] Chua L 1971 IEEE Transactions on Circuit Theory 18 507
[5] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205
[6] Milano G, Luebben M, Ma Z, Dunin-Borkowski R, Boarino L, Pirri C F, Waser R, Ricciardi C and Valov I 2018 Nat. Commun. 9 5151
[7] Sarkar D and Singh A K 2017 J. Phys. Chem. C 121 12953
[8] Khan M U, Hassan G and Bae J 2020 Journal of Materials Science: Materials in Electronics 31 1105
[9] Qi M, Zhang X, Yang L, Wang Z Q, Xu H Y, Liu W Z, Zhao X N and Liu Y C 2018 Appl. Phys. Lett. 113 223503
[10] Yu Z Q, Liu M L, Lang J X, Qian K and Zhang C H 2018 Acta Phys. Sin. 67 157302 (in Chinese)
[11] Yu Z Q, Sun T Y, Liu B S, Zhang L, Chen H J, Fan X S and Sun Z J 2021 J. Alloys Compd. 858 157749
[12] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 37
[13] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 294
[14] Chen Q L, Liu G, Xue W H, Shang J, Gao S, Yi X H, Lu Y, Chen X H, Tang M H, Zheng X J and Li R W 2019 ACS Appl. Electron. Mater. 1 789
[15] Kim S M, Kim H J, Jung H J, Kim S H, Park J Y, Seok T J, Park T J and Lee S W 2019 ACS Appl. Mater. Interfaces 11 30028
[16] Wu X H, Xu Z Q, Yu Z M, Zhang T, Zhao F, Sun T Y, Ma Z C, Li Z P and Wang S B 2015 J. Phys. D: Appl. Phys. 48 115101
[17] Yu Z Q, Xu J M, Liu B S, Sun Z J, Huang Q N, Ou M L, Wang Q C, Jia J H, Kang W B, Xiao Q Q, Gao T H and Xie Q 2023 Molecules 28 3835
[18] Hsu C C, Wang T C and Tsao C C 2018 J. Alloys Compd. 769 65
[19] You B K, Park W I, Kim J M, Park K, Seo H K, Lee J Y, Jung Y S and Lee K J 2014 ACS Nano 8 9492
[20] Zhao G, Yin Y L, Peng Y H, Yang W J, Liu Y H, Wang W K, Zhou W C and Tang D S 2019 J. Appl. Phys. 126 54303
[21] Song W B, Xi G Q, Pan Z, Liu J, Ye X B, Liu Z H, Wang X, Shan P F, Zhang L X, Lu N P, Fan L L, Qin X M and Long Y W 2024 Chin. Phys. B 33 057701
[22] Sharon V S, Veena Gopalan E and Malini K A 2023 Chin. Phys. B 32 037504
[23] Huang C H, Huang J S, Lin S M, Chang W Y, He J H and Chueh Y L 2012 ACS Nano 6 8407
[24] Tang J, Chai J W, Huang J, Deng L Y, Nguyen X S, Sun L F, Venkatesan T, Shen Z X, Tay C B and Chua S J 2015 ACS Appl. Mater. Interfaces 7 4737
[25] Wang H J, Zhu Y Y and Liu Y 2018 Chin. J. Phys. 56 3073
[26] Sun Y H, Yan X Q, Zheng X, Liu Y C, Zhao Y G, Shen Y W, Liao Q L and Zhang Y 2015 ACS Appl. Mater. Interfaces 7 7382
[27] Xu J, Shang Z X, Hou Z P and Wang X L 2022 Surfaces and Interfaces 31 102014
[28] Karthik K R G, Prabhakar R R, Hai L, Batabyal S K, Huang Y Z and Mhaisalkar S G 2013 Appl. Phys. Lett. 103 123114
[29] Pham Q P, Nguyen Q N L, Nguyen N H, Doan U T T, Ung T D T, Tran V C, Phan T B, Pham A T T and Pham N K 2023 Ceramics International 49 20742
[30] Li S Q, Lv J G, Lu B J, Yang R Q, Lu Y D, Wang F Z and Ye Z Z 2023 J. Mater. Sci. Eng. 41 532
[31] Hsu C C, Wang S Y, Lin Y S and Chen Y T 2019 J. Alloys Compd. 779 609
[32] Kumar A, Das M, Garg V, Sengar B S, Htay M T, Kumar S, Kranti A and Mukherjee S 2017 Appl. Phys. Lett. 110 253509
[33] Wang J, Pei X Y, Zhang J W, Li Y, Chen J B and Wang C W 2022 Ceramics International 48 15824
[34] Gul F and Efeoglu H 2017 Superlattices and Microstructures 101 172
[35] Ismail M, Rasheed M, Mahata C, Kang M G and Kim S J 2023 J. Alloys Compd. 960 170846
[36] Santos Y P, Valença E, Machado R and Macedo M A 2018 Mater. Sci. Semicond. Process. 86 43
[37] Aziz T N T Z, Rosli A B, Yusoff M M, Herman S H and Zulkifli Z 2019 Mater. Sci. Semicond. Process. 89 68
[38] Zhao B, Xiao M, Shen D Z and Zhou Y N 2020 Nanotechnology 31 125201
[39] Simanjuntak F M, Chandrasekaran S, Lin C C and Tseng T Y 2019 APL Mater. 7 051108
[40] Simanjuntak F M, Ohno T and Samukawa S 2019 AIP Adv. 9 105216
[41] Elboughdiri N, Iqbal S, Abdullaev S, Aljohani M, Safeen A, Althubeiti K and Khan R 2023 RSC Adv. 13 35993
[42] Huang C H, Huang J S, Lai C C, Huang H W, Lin S J and Chueh Y L 2013 ACS Appl. Mater. Interfaces 5 6017
[43] Zhang Y J, Chen X H, Wang Z R, Chen Q L, Liu G, Li Y, Wang P J, Li R W and Miao X S 2019 IEEE Trans. Electron Dev. 66 4710
[44] Mundle R, Carvajal C and Pradhan A K 2016 Langmuir 32 4983
[45] Tominov R V, Vakulov Z E, Avilov V I, Khakhulin D A, Fedotov A A, Zamburg E G, Smirnov V A and Ageev O A 2020 Nanomaterials 10 1007
[46] Qin X Z, Hu J D, Liu H, Xu X, Yang F, Sun B, Zhao Y, Huang M and Zhang Y 2023 J. Phys. Chem. Lett. 14 3039
[1] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[2] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[3] Electronic structure and disorder effect of La3Ni2O7 superconductor
Yuxin Wang(王郁欣), Yi Zhang(张燚), and Kun Jiang(蒋坤). Chin. Phys. B, 2025, 34(4): 047105.
[4] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[5] A sound-sensitive neuron incorporating a memristive-ion channel
Xin-Lin Song(宋欣林), Ge Zhang(张鬲), and Fei-Fei Yang(杨飞飞). Chin. Phys. B, 2025, 34(12): 120502.
[6] Brain-inspired memristive pooling method for enhanced edge computing
Wenbin Guo(郭文斌), Zhe Feng (冯哲), Haochen Wang (王昊辰), Zhihao Lin(蔺志豪), Jianxun Zou(邹建勋), Zuyu Xu(徐祖雨), Yunlai Zhu(朱云来), Yuehua Dai (代月花), and Zuheng Wu (吴祖恒). Chin. Phys. B, 2025, 34(12): 127301.
[7] Memristor-coupled dynamics and synchronization in two bi-neuron Hopfield neural networks
Fangyuan Li(李芳苑), Haigang Tang(唐海刚), Yunzhen Zhang(张云贞), Bocheng Bao(包伯成), Hany Hassanin, and Lianfa Bai(柏连发). Chin. Phys. B, 2025, 34(12): 128701.
[8] Memristive effect on a Hindmarsh-Rose neuron
Fei Gao(高飞), Xiangcheng Yu(于相成), Yue Deng(邓玥), Fang Yuan(袁方), Guangyi Wang(王光义), and Tengfei Lei(雷腾飞). Chin. Phys. B, 2025, 34(12): 120504.
[9] Discrete neuron models and memristive neural network mapping: A comprehensive review
Fei Yu(余飞), Xuqi Wang(王许奇), Rongyao Guo(郭荣垚), Zhijie Ying(应志杰), Yan He(何燕), and Qiong Zou(邹琼). Chin. Phys. B, 2025, 34(12): 120501.
[10] Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission
Lamia Chouchane, Hamid Hamiche, Karim Kemih, Ouerdia Megherbi, and Karim Labadi. Chin. Phys. B, 2025, 34(12): 120509.
[11] Artificial synapse based on Co3O4 nanosheets for high-accuracy pattern recognition
Ying Li(李颖), Xiaofan Zhou(周晓凡), Jiajun Guo(郭家俊), Tong Chen(陈通), Xiaohui Zhang(张晓辉), Xia Xiao(肖夏), Guangyu Wang(王光宇), Mehran Khan Alam, Qi Zhang(张琪), and Liqian Wu(武力乾). Chin. Phys. B, 2025, 34(12): 128101.
[12] Dynamical behavior of ring-star neural networks with small-world characteristics
Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波). Chin. Phys. B, 2025, 34(10): 100502.
[13] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[14] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[15] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
No Suggested Reading articles found!