| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Sol-gel synthesis and nonvolatile resistive switching behaviors of wurtzite phase ZnO nanofilms |
| Zhi-Qiang Yu(余志强)1,2,4,†, Jin-Hao Jia(贾金皓)1, Mei-Lian Ou(欧梅莲)1, Tang-You Sun(孙堂友)3,4,‡, and Zhi-Mou Xu(徐智谋)4 |
1 School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; 2 School of Computer and Information Technology, Hohhot Minzu College, Hohhot 010051, China; 3 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; 4 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
|
|
Abstract A facile sol-gel method and heating treatment process have been reported to synthesize the wurtzite phase ZnO nanofilms with the preferential growth orientation along the [001] direction on the FTO substrates. The as-prepared wurtzite phase ZnO nanofilms-based memristor with the W/ZnO/FTO sandwich has demonstrated a reliable nonvolatile bipolar resistive switching behaviors with an ultralow set voltage of about +3 V and reset voltage of approximately -3.6 V, high resistive switching ratio of more than two orders of magnitude, good resistance retention ability (up to 104 s), and excellent durability. Furthermore, the resistive switching behavior in the low-resistance state is attributed to the Ohmic conduction mechanism, while the resistive switching behavior in the high-resistance state is controlled by the trap-modulated space charge limited current (SCLC) mechanism. In addition, the conductive filament model regulated by the oxygen vacancies has been proposed, where the nonvolatile bipolar resistive switching behaviors could be attributed to the formation and rupture of conductive filaments in the W/ZnO/FTO memristor. This work demonstrates that the as-prepared wurtzite phase ZnO nanofilms-based W/ZnO/FTO memristor has promising prospects in future nonvolatile memory applications.
|
Received: 10 April 2025
Revised: 11 May 2025
Accepted manuscript online: 06 June 2025
|
|
PACS:
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
| |
72.60.+g
|
(Mixed conductivity and conductivity transitions)
|
| |
72.80.Ga
|
(Transition-metal compounds)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62341305, 61805053, and 22269002) and the Science and Technology Project of Guangxi Zhuang Autonomous Region, China (Grant Nos. AD19110038 and AD21238033). |
Corresponding Authors:
Zhi-Qiang Yu, Tang-You Sun
E-mail: zhiqiangyu@alumni.hust.edu.cn;suntangyou@guet.edu.cn
|
Cite this article:
Zhi-Qiang Yu(余志强), Jin-Hao Jia(贾金皓), Mei-Lian Ou(欧梅莲), Tang-You Sun(孙堂友), and Zhi-Mou Xu(徐智谋) Sol-gel synthesis and nonvolatile resistive switching behaviors of wurtzite phase ZnO nanofilms 2025 Chin. Phys. B 34 127302
|
[1] Persson K M, Ram M S, Kilpi O P, Borg M and Wernersson L E 2020 Adv. Electron. Mater. 6 2000154 [2] Alagoz H S, Chow K H and Jung J 2019 Appl. Phys. Lett. 114 163502 [3] Manning H G, Biswas S, Holmes J D and Boland J J 2017 ACS Appl. Mater. Interfaces 9 38959 [4] Chua L 1971 IEEE Transactions on Circuit Theory 18 507 [5] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205 [6] Milano G, Luebben M, Ma Z, Dunin-Borkowski R, Boarino L, Pirri C F, Waser R, Ricciardi C and Valov I 2018 Nat. Commun. 9 5151 [7] Sarkar D and Singh A K 2017 J. Phys. Chem. C 121 12953 [8] Khan M U, Hassan G and Bae J 2020 Journal of Materials Science: Materials in Electronics 31 1105 [9] Qi M, Zhang X, Yang L, Wang Z Q, Xu H Y, Liu W Z, Zhao X N and Liu Y C 2018 Appl. Phys. Lett. 113 223503 [10] Yu Z Q, Liu M L, Lang J X, Qian K and Zhang C H 2018 Acta Phys. Sin. 67 157302 (in Chinese) [11] Yu Z Q, Sun T Y, Liu B S, Zhang L, Chen H J, Fan X S and Sun Z J 2021 J. Alloys Compd. 858 157749 [12] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 37 [13] Yu Z Q, Qu X P, Yang W P, Peng J and Xu Z M 2016 J. Alloys Compd. 688 294 [14] Chen Q L, Liu G, Xue W H, Shang J, Gao S, Yi X H, Lu Y, Chen X H, Tang M H, Zheng X J and Li R W 2019 ACS Appl. Electron. Mater. 1 789 [15] Kim S M, Kim H J, Jung H J, Kim S H, Park J Y, Seok T J, Park T J and Lee S W 2019 ACS Appl. Mater. Interfaces 11 30028 [16] Wu X H, Xu Z Q, Yu Z M, Zhang T, Zhao F, Sun T Y, Ma Z C, Li Z P and Wang S B 2015 J. Phys. D: Appl. Phys. 48 115101 [17] Yu Z Q, Xu J M, Liu B S, Sun Z J, Huang Q N, Ou M L, Wang Q C, Jia J H, Kang W B, Xiao Q Q, Gao T H and Xie Q 2023 Molecules 28 3835 [18] Hsu C C, Wang T C and Tsao C C 2018 J. Alloys Compd. 769 65 [19] You B K, Park W I, Kim J M, Park K, Seo H K, Lee J Y, Jung Y S and Lee K J 2014 ACS Nano 8 9492 [20] Zhao G, Yin Y L, Peng Y H, Yang W J, Liu Y H, Wang W K, Zhou W C and Tang D S 2019 J. Appl. Phys. 126 54303 [21] Song W B, Xi G Q, Pan Z, Liu J, Ye X B, Liu Z H, Wang X, Shan P F, Zhang L X, Lu N P, Fan L L, Qin X M and Long Y W 2024 Chin. Phys. B 33 057701 [22] Sharon V S, Veena Gopalan E and Malini K A 2023 Chin. Phys. B 32 037504 [23] Huang C H, Huang J S, Lin S M, Chang W Y, He J H and Chueh Y L 2012 ACS Nano 6 8407 [24] Tang J, Chai J W, Huang J, Deng L Y, Nguyen X S, Sun L F, Venkatesan T, Shen Z X, Tay C B and Chua S J 2015 ACS Appl. Mater. Interfaces 7 4737 [25] Wang H J, Zhu Y Y and Liu Y 2018 Chin. J. Phys. 56 3073 [26] Sun Y H, Yan X Q, Zheng X, Liu Y C, Zhao Y G, Shen Y W, Liao Q L and Zhang Y 2015 ACS Appl. Mater. Interfaces 7 7382 [27] Xu J, Shang Z X, Hou Z P and Wang X L 2022 Surfaces and Interfaces 31 102014 [28] Karthik K R G, Prabhakar R R, Hai L, Batabyal S K, Huang Y Z and Mhaisalkar S G 2013 Appl. Phys. Lett. 103 123114 [29] Pham Q P, Nguyen Q N L, Nguyen N H, Doan U T T, Ung T D T, Tran V C, Phan T B, Pham A T T and Pham N K 2023 Ceramics International 49 20742 [30] Li S Q, Lv J G, Lu B J, Yang R Q, Lu Y D, Wang F Z and Ye Z Z 2023 J. Mater. Sci. Eng. 41 532 [31] Hsu C C, Wang S Y, Lin Y S and Chen Y T 2019 J. Alloys Compd. 779 609 [32] Kumar A, Das M, Garg V, Sengar B S, Htay M T, Kumar S, Kranti A and Mukherjee S 2017 Appl. Phys. Lett. 110 253509 [33] Wang J, Pei X Y, Zhang J W, Li Y, Chen J B and Wang C W 2022 Ceramics International 48 15824 [34] Gul F and Efeoglu H 2017 Superlattices and Microstructures 101 172 [35] Ismail M, Rasheed M, Mahata C, Kang M G and Kim S J 2023 J. Alloys Compd. 960 170846 [36] Santos Y P, Valença E, Machado R and Macedo M A 2018 Mater. Sci. Semicond. Process. 86 43 [37] Aziz T N T Z, Rosli A B, Yusoff M M, Herman S H and Zulkifli Z 2019 Mater. Sci. Semicond. Process. 89 68 [38] Zhao B, Xiao M, Shen D Z and Zhou Y N 2020 Nanotechnology 31 125201 [39] Simanjuntak F M, Chandrasekaran S, Lin C C and Tseng T Y 2019 APL Mater. 7 051108 [40] Simanjuntak F M, Ohno T and Samukawa S 2019 AIP Adv. 9 105216 [41] Elboughdiri N, Iqbal S, Abdullaev S, Aljohani M, Safeen A, Althubeiti K and Khan R 2023 RSC Adv. 13 35993 [42] Huang C H, Huang J S, Lai C C, Huang H W, Lin S J and Chueh Y L 2013 ACS Appl. Mater. Interfaces 5 6017 [43] Zhang Y J, Chen X H, Wang Z R, Chen Q L, Liu G, Li Y, Wang P J, Li R W and Miao X S 2019 IEEE Trans. Electron Dev. 66 4710 [44] Mundle R, Carvajal C and Pradhan A K 2016 Langmuir 32 4983 [45] Tominov R V, Vakulov Z E, Avilov V I, Khakhulin D A, Fedotov A A, Zamburg E G, Smirnov V A and Ageev O A 2020 Nanomaterials 10 1007 [46] Qin X Z, Hu J D, Liu H, Xu X, Yang F, Sun B, Zhao Y, Huang M and Zhang Y 2023 J. Phys. Chem. Lett. 14 3039 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|