Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 127303    DOI: 10.1088/1674-1056/ade4b2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of oxide bottom electrodes on resistive switching behavior associated with oxygen vacancy dynamics in Al/ZrO2/BE ReRAM structures

Wei Zhang(张伟)1,†, Zhen Guo(郭震)1, Luobin Qiu(邱洛彬)1, Jun Liu(刘军)1, and Fangren Hu(胡芳仁)1,2,‡
1 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Peter Grunberg Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  This study investigates the impact of oxide bottom electrode (BE) material and orientation on the resistive switching (RS) characteristics of Al/ZrO2-based ReRAM devices. Devices with different oxide BEs, including (400)- and (222)-oriented ITO BEs deposited under pure argon and argon-oxygen (20% O2) sputtering atmospheres, as well as SrRuO3 (SRO), show distinct RS behaviors. The Al/ZrO2/(400)-ITO and Al/ZrO2/SRO devices demonstrate stable bipolar RS performance, with (400)-ITO enabling an abrupt reset process, a wider memory window (> 104), and superior stability, while SRO devices exhibit gradual reset transitions with lower power consumption. Furthermore, the crystallographic orientation control applied to ITO BE significantly affects the VO dynamics and RS performance, with (222)-ITO devices exhibiting irreversible RS behavior. It is irrefutable that BE material and its orientation can strongly influence RS performance by modulating the VO dynamics, electric field distribution, and conductive filament behavior. These findings underscore the importance of BE properties in optimizing ReRAM performance and provide valuable guidance for the development of high-efficiency memory devices.
Keywords:  ZrO2 film      resistive switching mechanism      electrode material and crystallographic orientation      oxygen vacancy dynamics  
Received:  15 April 2025      Revised:  13 June 2025      Accepted manuscript online:  16 June 2025
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  77.55.-g (Dielectric thin films)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 51602160 and 61605086), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150842), the Talent Project of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY222127).
Corresponding Authors:  Wei Zhang, Fangren Hu     E-mail:  chanway@njupt.edu.cn;hufr@njupt.edu.cn

Cite this article: 

Wei Zhang(张伟), Zhen Guo(郭震), Luobin Qiu(邱洛彬), Jun Liu(刘军), and Fangren Hu(胡芳仁) Impact of oxide bottom electrodes on resistive switching behavior associated with oxygen vacancy dynamics in Al/ZrO2/BE ReRAM structures 2025 Chin. Phys. B 34 127303

[1] Wong H S P and Salahuddin S 2015 Nat. Nanotech. 10 191
[2] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[3] Ielmini D 2016 Semicond. Sci. Technol. 31 063002
[4] Zahoor F, Nisar A, Bature U I, Abbas H, Bashir F, Chattopadhyay A, Kaushik B K, Alzahrani A and Hussin F A 2024 Nanoscale Adv. 6 4980
[5] Yang Y, Zhao J, Liu Y, Hua X, Wang T, Zheng J, Hao Z, Xiong B, Sun C, Han Y, Wang J, Li H, Wang L and Luo Y 2024 Chin. Phys. B 33 030702
[6] Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q and Yang J J 2020 Nat. Rev. Mater. 5 173
[7] Chen S and Valov I 2022 Adv. Mater. 34 2105022
[8] Rehman M M, Yang B S, Yang Y J, Karimov K S and Choi K H 2017 Curr. Appl. Phys. 17 533
[9] Sawa A 2008 Mater. Today 11 28
[10] Munir F, Schon D, Menzel S, Stasner P, Waser R and Wiefels S 2024 IEEE Trans. Electron Dev. 71 6691
[11] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[12] Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mater. Sci. Eng. R Rep. 83 1
[13] Zhang W, Lei J, Dai Y, Zhang X, Kang L, Peng B and Hu F 2022 Nanotechnology 33 255703
[14] Jiang Z, Zhang W, Bao J, Cheng H, Zhang X and Hu F 2020 Ceram. Int. 46 24838
[15] Hsu C C, Wang T C and Tsao C C 2018 J. Alloys Compd. 769 65
[16] Tsai T L, Chang H Y, Lou J J C and Tseng T Y 2016 Appl. Phys. Lett. 108 153505
[17] Li Y, Long S, Zhang M, Liu Q, Shao L, Zhang S, Wang Y, Zuo Q, Liu S and Liu M 2010 IEEE Electron Dev. Lett. 31 117
[18] Lee J, Bourim E M, Lee W and Hwang H 2010 Appl. Phys. Lett. 97 172105
[19] Kamata Y, Kamimuta Y, Ino T, Nabatame T and Torii K 2005 Jpn. J. Appl. Phys. 44 2323
[20] Lee S, Kim T, Jang B, Lee W, Song K C, Kim H S, Do G Y, Hwang S B, Chung S and Jang J 2018 IEEE Electron Dev. Lett. 39 668
[21] Wang S Y, Lee D Y, Huang T Y, Wu J W and Tseng T Y 2010 Nanotechnology 21 495201
[22] Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 Proc. IEEE 100 1951
[23] Huang X, Wang Y, Huang H, Duan L and Guo T 2024 Chin. Phys. B 33 017303
[24] Li Y, Long S, Lv H, Liu Q, Wang Y, Zhang S, Lian W, Wang M, Zhang K, Xie H, Liu S and Liu M 2011 Nanotechnology 22 254028
[25] Liu H C, Tang X G, Liu Q X, Jiang Y P, Li W H, Guo X B and Tang Z H 2020 Ceram. Int. 46 21196
[26] Choi K and Pak J J 2024 Semicond. Sci. Technol. 39 045012
[27] Jang B, Kim J, Lee J, Jang J and Kwon H 2024 J. Mater. Sci. Technol. 189 68
[28] Marikkannan M, Subramanian M, Mayandi J, Tanemura M, Vishnukanthan V and Pearce J M 2015 AIP Adv. 5 017128
[29] Marchewka A, Roesgen B, Skaja K Skaja K, Du H, Jia C L, Mayer J, Rana V, Waser R and Menzel S 2016 Adv. Electron. Mater. 2 1500233
[30] Zhang W, Guo Z, Dai Y, Lei J, Wang J and Hu F 2023 Ceram. Int. 49 35973
[31] Huang Y, Shen Z, Wu Y, Xie M, Hu Y, Zhang S, Shi X and Zeng H 2016 AIP Adv. 6 025018
[32] Saitoh S and Kinoshita K 2020 Appl. Phys. Lett. 116 112101
[33] Wang X, Sun B, Li X, Guo B, Zeng Y, Mao S, Zhu S, Xia Y, Tian S and Luo W 2018 Ceram. Int. 44 18108
[34] Ismail M, Abbas H, Choi C and Kim S 2020 J. Alloys Compd. 835 155256
[35] Ali S, Hussain M, Ismail M, Iqbal M W and Kim S 2024 J. Alloys Compd. 997 174802
[36] Lata L K and Jain P K 2023 Emergent Mater. 6 1979
[37] Zhang W, Ouyang J, Kang L M, Cheng H B, Yang Q and Hu F R 2015 J. Mater. Sci.: Mater. Electron. 26 9962
[38] Kim W, Menzel S, Wouters D J, Waser R and Rana V 2016 IEEE Electron Dev. Lett. 37 564
[39] Zhang W, Peng B, Kang L, Hu F, Cheng H and Wang Y 2022 Mater. Res. Bull. 145 111553
[1] Resistive switching properties of SnO2 nanowires fabricated by chemical vapor deposition
Ya-Qi Chen(陈亚琦), Zheng-Hua Tang(唐政华), Chun-Zhi Jiang(蒋纯志), and De-Gao Xu(徐徳高). Chin. Phys. B, 2023, 32(9): 097302.
[2] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[3] Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉). Chin. Phys. B, 2017, 26(10): 106801.
[4] Charge transport and bipolar switching mechanismin a Cu/HfO2/Pt resistive switching cell
Tingting Tan(谭婷婷), Tingting Guo(郭婷婷), Zhihui Wu(吴志会), Zhengtang Liu(刘正堂). Chin. Phys. B, 2016, 25(11): 117306.
[5] Analysis and modeling of resistive switching mechanism oriented to fault tolerance of resistive memory based on memristor
Huang Da (黄达), Wu Jun-Jie (吴俊杰), Tang Yu-Hua (唐玉华). Chin. Phys. B, 2014, 23(3): 038404.
[6] Analysis and modeling of resistive switching mechanisms oriented to resistive random-access memory
Huang Da (黄达), Wu Jun-Jie (吴俊杰), Tang Yu-Hua (唐玉华). Chin. Phys. B, 2013, 22(3): 038401.
No Suggested Reading articles found!