Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107509    DOI: 10.1088/1674-1056/adf31e
RAPID COMMUNICATION Prev   Next  

Characterization of interlayer coupling in YIG/Py bilayer using polarized neutron reflectometry

He Bai(白鹤)1,2, Wei He(何为)3, Dan Liu(刘丹)4, Jialiang Li(李嘉亮)1,2, Xiao Deng(邓霄)2,5, Yuan Sun(孙远)1,2, Songwen Xiao(肖松文)1,2, Sheng Cheng(成晟)1,2, Xiaozhi Zhan(詹晓芝)1,2, Jianwang Cai(蔡建旺)3, and Tao Zhu(朱涛)2,3,6,†
1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2 Spallation Neutron Source Science Center, Dongguan 523803, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Department of Physics, Beijing Technology and Business University, Beijing 100048, China;
5 University of Science and Technology Beijing, Beijing 100083, China;
6 Songshan Lake Material Laboratory, Dongguan 523808, China
Abstract  The complex interplay of magnetic interactions at the yttrium iron garnet (YIG)/ferromagnet interface is important for spintronic and magnonic devices. In this study, we present a comprehensive investigation of the interlayer coupling and switching mechanisms in YIG/Py (permalloy) heterostructures based on gadolinium gallium garnet (GGG) and SiO$_{2}$ substrates. We observe antiferromagnetic interlayer coupling between Py and YIG on SiO$_{2}$ substrates, whereas ferromagnetic interlayer coupling is observed on GGG substrates. Using polarized neutron reflectometry with depth- and element-resolved measurements, we obtain an in-depth understanding of the magnetic interactions between the YIG and Py layers. We demonstrate that polycrystalline YIG gives rise to antiferromagnetic interlayer coupling. This work provides valuable insights into designing and controlling magnetic coupling in hybrid structures for spintronic applications.
Keywords:  interlayer coupling      polarized neutron reflectivity      yttrium iron garnets  
Received:  09 July 2025      Revised:  09 July 2025      Accepted manuscript online:  23 July 2025
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.30.Et (Exchange and superexchange interactions)  
  61.05.fj (Neutron reflectometry)  
Fund: This work was supported by the National Key Basic Research Program of China (Grant Nos. 2021YFA1400300 and 2023YFA1610400), the National Natural Science Foundation of China (Grant Nos. 12204268, 52371169, 52130103, and U22A20263), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023B1515120015), and the Open Research Fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN13). PNR experiments were conducted at the Beamline MR of the Chinese Spallation Neutron Source.
Corresponding Authors:  Tao Zhu     E-mail:  tzhu@iphy.ac.cn

Cite this article: 

He Bai(白鹤), Wei He(何为), Dan Liu(刘丹), Jialiang Li(李嘉亮), Xiao Deng(邓霄), Yuan Sun(孙远), Songwen Xiao(肖松文), Sheng Cheng(成晟), Xiaozhi Zhan(詹晓芝), Jianwang Cai(蔡建旺), and Tao Zhu(朱涛) Characterization of interlayer coupling in YIG/Py bilayer using polarized neutron reflectometry 2025 Chin. Phys. B 34 107509

[1] Huang S Y, Fan X, Qu D, Chen Y P,WangWG,Wu J, Chen T Y, Xiao J Q and Chien C L 2012 Phys. Rev. Lett. 109 107204
[2] Miao B F, Huang S Y, Qu D and Chien C L 2013 Phys. Rev. Lett. 111 066602
[3] Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nat. Mater. 9 898
[4] Singh S, Katoch J, Zhu T, Meng K Y, Liu T, Brangham J T, Yang F, Flatte M E and Kawakami R K 2017 Phys. Rev. Lett. 118 187201
[5] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[6] Soumah L, Beaulieu N, Qassym L, Carretero C, Jacquet E, Lebourgeois R, Youssef J B, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355
[7] Wesenberg D, Liu T, Balzar D, Wu M and Zink B L 2017 Nat. Phys. 13 987
[8] Bai H, Zhan X Z, Li G, Su J, Zhu Z Z, Zhang Y, Zhu T and Cai J W 2019 Appl. Phys. Lett. 115 182401
[9] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E, Goennenwein S T and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[10] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S 2017 Nat. Mater. 16 309
[11] Bai H, Li J, Ke J, Guo Q, Zhu Z, Guo Y, Deng X, Liu D, Cai J and Zhu T 2024 Adv. Electron. Mater. 10 2300785
[12] Sheng L, Elyasi M, Chen J, He W, Wang Y, Wang H, Feng H, Zhang Y, Medlej I, Liu S, Jiang W, Han X, Yu D, Ansermet J P, Bauer G E W and Yu H 2023 Phys. Rev. Lett. 130 046701
[13] Zhang Z, Yang H, Wang Z, Cao Y and Yan P 2021 Phys. Rev. B 103 104420
[14] Dong J, Cheng C, Wei J, Xu H, Zhang Y, Wang Y, Zhu Z, Li L, Wu H, Yu G and Han X 2023 Appl. Phys. Lett. 122 122401
[15] Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S, Yu G Q and Han X F 2018 Phys. Rev. B 98 134426
[16] Rao Y H, Zhang H W, Yang Q H, Zhang D N, Jin L C, Ma B and Wu Y J 2018 Chin. Phys. B 27 086701
[17] Klingler S, Amin V, Geprägs S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett. 120 127201
[18] Li Y, Cao W, Amin V P, Zhang Z, Gibbons J, Sklenar J, Pearson J, Haney P M, Stiles M D, Bailey W E, Novosad V, Hoffmann A and Zhang W 2020 Phys. Rev. Lett. 124 117202
[19] Wang Q, Verba R, Davidkova K, Heinz B, Tian S, Rao Y, Guo M, Guo X, Dubs C, Pirro P and Chumak A V 2024 Nat. Commun. 15 7577
[20] Fan Y, Quarterman P, Finley J, Han J, Zhang P, Hou J T, Stiles M D, Grutter A J and Liu L 2020 Phys. Rev. Appl. 13 061002
[21] Quarterman P, Fan Y, Chen Z, Jensen C J, Chopdekar R V, Gilbert D A, Holtz M E, Stiles M D, Borchers J A, Liu K, Liu L and Grutter A J 2022 Phys. Rev. Mater. 6 094418
[22] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431
[23] Roos M J, Quarterman P, Ding J, Wu M, Kirby B J and Zink B L 2022 Phys. Rev. Mater. 6 034401
[24] Suturin S M, Korovin A M, Bursian V E, Lutsev L V, Bourobina V, Yakovlev N L, Montecchi M, Pasquali L, Ukleev V, Vorobiev A, Devishvili A and Sokolov N S 2018 Phys. Rev. Mater. 2 104404
[25] Fan Y, Finley J, Han J, Holtz M E, Quarterman P, Zhang P, Safi T S, Hou J T, Grutter A J and Liu L 2021 Adv. Mater. 33 2008555
[26] Qian J, Li Y, Jiang Z, Busch R, Ni H C, Lo T H, Hoffmann A, Schleife A and Zuo J M 2024 arXiv:2402.14553 [cond-mat.mtrl-sci]
[1] Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure
Yuxin Ma(马宇欣), Munan Hao(郝木难), Qi Li(李琦), Ke Ma(马克), Haodong Li(李浩东), Duo Zhang(张铎), Ruijin Sun(孙瑞锦), Shifeng Jin(金士锋), and Changchun Zhao(赵长春). Chin. Phys. B, 2025, 34(6): 067402.
[2] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[3] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[4] Emerging properties of two-dimensional twisted bilayer materials
Yang Cheng(程阳), Chen Huang(黄琛), Hao Hong(洪浩), Zixun Zhao(赵子荀), Kaihui Liu(刘开辉). Chin. Phys. B, 2019, 28(10): 107304.
[5] Percolation-related magnetic coupling and magnetoresistance properties in Fe/Si1-xAgx multilayers
Wang Hai (王海), Tang Yun-Jun (唐云俊), Li Xiang (李祥), Chen Xi (陈熹), Wang Yin-Jun (王荫君), Zhu Tao (朱涛), Zhao Hong-Wu (赵宏武), Zhan Wen-Shan (詹文山). Chin. Phys. B, 2002, 11(2): 183-187.
No Suggested Reading articles found!