|
|
|
Optically-excited acoustic waves in Si nanowires probed by time-resolved HOLZ lines |
| He Wang(王贺)1, Shuaishuai Sun(孙帅帅)2, Yizhe Wang(王怡哲)1, Qianming An(安乾明)1, Xianhui Ye(叶显珲)1, Jun Li(李俊)2, Huanfang Tian(田焕芳)2, Huaixin Yang(杨槐馨)2, Jianqi Li(李建奇)2,†, and Zian Li(李子安)1,‡ |
1 School of Physical Science and Technology, Guangxi University, Nanning 530004, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Exploring advanced techniques capable of probing nanometric acoustic waves in nanostructures is critically important for the development of miniaturized acoustic devices. In this study, we probe the optically-excited acoustic waves in a single silicon nanowire (NW) using the time-resolved (tr-) high-order Laue-zone (HOLZ) lines under convergent-beam electron diffraction (CBED) conditions in an ultrafast transmission electron microscope (UTEM). We devise an experimental scheme to obtain tr-HOLZ lines under off-zone-axis CBED conditions. We also propose a geometric description of HOLZ line formation and use this alternative description to quantitatively evaluate the dynamics of optically-excited silicon NW. Using part of the deformation gradient tensor, our simulations of the dynamics of Si NW reproduce the experimental results. We further discuss the feasibility of a full retrieval of the deformation gradient tensor by using a set of HOLZ lines from three zone axes. Our findings illustrate a strategy for the quantitative access to dynamical acoustic waves optically excited in micro- and nano-structures using UTEM.
|
Received: 10 May 2025
Revised: 06 June 2025
Accepted manuscript online: 09 June 2025
|
|
PACS:
|
87.64.Ee
|
(Electron microscopy)
|
| |
61.05.jm
|
(Convergent-beam electron diffraction, selected-area electron diffraction, nanodiffraction)
|
|
| Fund: This project is supported by the Guangxi Natural Science Foundation (Grant No. 2024GXNSFDA010014), the National Natural Science Foundation of China (Grant Nos. 12364018 and U22A6005), the Guangxi Science and Technology Major Program (Grant No. AA23073019), and the Innovation Project of Guangxi Graduate Education (Grant Nos. YCBZ2022049 and YCBZ2023015). |
Corresponding Authors:
Tiejun Zhou, Zian Li
E-mail: LJQ@iphy.ac.cn;zianli@gxu.edu.cn
|
Cite this article:
He Wang(王贺), Shuaishuai Sun(孙帅帅), Yizhe Wang(王怡哲), Qianming An(安乾明), Xianhui Ye(叶显珲), Jun Li(李俊), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), Jianqi Li(李建奇), and Zian Li(李子安) Optically-excited acoustic waves in Si nanowires probed by time-resolved HOLZ lines 2025 Chin. Phys. B 34 098701
|
[1] Zhang M, Li Z A, Tian H, Yang H and Li J 2018 Appl. Phys. Lett. 113 133103 [2] Danz T, Domröse T and Ropers C 2021 Science 371 371 [3] Harb M, Peng W, Sciaini G, Hebeisen C T, Ernstorfer R, Eriksson M A, Lagally M G, Kruglik S G and Miller R J D 2009 Phys. Rev. B 79 094301 [4] McKenna A J, Eliason J K and Flannigan D J 2017 Nano Lett. 17 3952 [5] Zhang Y, Sun S, Wang W, Tian H, Li J, Li J and Yang H 2023 Phys. Rev. B 108 245426 [6] Qian Q, Shen X, Luo D, Jia L, Kozina M, Li R, Lin M F, Reid A H, Weathersby S, Park S, Yang J, Zhou Y, Zhang K, Wang X and Huang S 2020 ACS Nano 14 8449 [7] Fu X, Barantani F, Gargiulo S, Madan I, Berruto G, LaGrange T, Jin L, Wu J, Vanacore G M, Carbone F and Zhu Y 2020 Nat. Commun. 11 5770 [8] Plemmons D A, Suri P K and Flannigan D J 2015 Chem. Mater. 27 3178 [9] Lian Y, Sun J and Jiang L 2023 Int. J. Mech. Syst. Dyn. 3 192 [10] Zhou F, Liu H, Zajac M, Hwangbo K, Jiang Q, Chu J H, Xu X, Arslan I, Gage T E and Wen H 2023 Nano Lett. 23 10213 [11] Kwon O H, Barwick B, Park H S, Baskin J S and Zewail A H 2008 Nano Lett. 8 3557 [12] Baskin J S, Park H S and Zewail A H 2011 Nano Lett. 11 2183 [13] Tong L, Yuan J, Zhang Z, Tang J and Wang Z 2023 Nat. Nanotechnol. 18 145 [14] Sun S, Li Z, Li Z A, Xiao R, Zhang M, Tian H, Yang H and Li J 2018 Nanoscale 10 7465 [15] Li Z, Sun S, Li Z A, Zhang M, Cao G, Tian H, Yang H and Li J 2017 Nanoscale 9 13313 [16] Tanaka M and Tsuda K 2011 J. Electron Microsc. 60 S245 [17] Huang J, KimMJ, Chidambaram P R, Irwin R B, Jones P J,Weijtmans JW, Koontz E M,Wang Y G, Tang S andWise R 2006 Appl. Phys. Lett. 89 063114 [18] Jones E J, Azize M, Smith M J, Palacios T and Gradečak S 2012 Appl. Phys. Lett. 101 113101 [19] Yurtsever A and Zewail A H 2009 Science 326 708 [20] Yurtsever A, Schaefer S and Zewail A H 2012 Nano Lett. 12 3772 [21] Flannigan D J, Cremons D R and Valley D T 2017 J. Mater. Res. 32 239 [22] Feist A, Rubiano da Silva N, Liang W, Ropers C and Schäfer S 2018 Struct. Dyn. 5 014302 [23] Bach N, Feist A, Möller M, Ropers C and Schäfer S 2022 Struct. Dyn. 9 034301 [24] Nakamura A, Shimojima T and Ishizaka K 2022 Faraday Discuss. 237 27 [25] Martin Y, Rouviere J, Zuo J and Favre-Nicolin V 2016 Ultramicrosc. 160 64 [26] Morawiec A 2005 Philos. Mag. 85 1611 [27] Carbone F, Baum P, Rudolf P and Zewail A H 2008 Phys. Rev. Lett. 100 035501 [28] Maier H, Keller R, Renner H, Mughrabi H and Preston A 1996 Philos. Mag. A 74 23 [29] Wittmann R, Kruse P, FrauenkronMand Gerthsen D 2000 Philos. Mag. A 80 2215 [30] Zuo J M and Spence J C 2017 Advanced Transmission Electron Microscopy (New York: Springer) [31] Feist A, Bach N, Rubiano da Silva N, Danz T, Möller M, Priebe K E, Domröse T, Gatzmann J G, Rost S, Schauss J, Strauch S, Bormann R, Sivis M, Schäfer S and Ropers C 2017 Ultramicroscopy 176 63 [32] Houdellier F, Caruso G, Weber S, Hÿtch M, Gatel C and Arbouet A 2019 Ultramicroscopy 202 26 [33] Zhu C, Zheng D, Wang H, Zhang M, Li Z, Sun S, Xu P, Tian H, Li Z, Yang H and Li J 2020 Ultramicroscopy 209 112887 [34] Chang S L, Dwyer C, Barthel J, Boothroyd C B and Dunin-Borkowski R E 2016 Ultramicroscopy 161 90 [35] Cattaneo M, Müller-Caspary K, Barthel J, MacArthur K E, Gauquelin N, Lipinska-Chwalek M, Verbeeck J, Allen L J and Dunin-Borkowski R E 2024 Ultramicroscopy 267 114050 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|