Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094404    DOI: 10.1088/1674-1056/add90a
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Cattaneo-Christov heat transfer model for tangent hyperbolic fluid with Thompson-Torian slip and melting effects

Anwar Saeed1,† and Afrah Al-Bossly2
1 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
2 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Abstract  This work investigates thermal enhancement in fluid flow over a nonlinear stretching sheet. The thickness of the sheet is variable and the flow of the fluid is affected by solar radiation energy with Thompson and Troian slip effects. The flow is magnetized by applying a magnetic field in the normal direction to the flow system. Moreover, thermal transport is controlled by incorporating the Cattaneo-Christov heat fluid model into the flow problem. The governing equations, initially framed in their dimensional form, are meticulously transformed into a dimensionless framework to simplify the analysis. These dimensionless equations are then solved using the homotopy analysis method (HAM). It is observed in this study that upsurges in the stagnation parameter, critical shear rate and velocity slip factor augment the velocity distribution while reducing the thermal profiles. The velocity distribution deteriorates while the thermal profiles are amplified with expansions in the magnetic factor and power law index. The thermal distribution also increases with rising Prandtl number and radiation factor. Augmentation of the power-law index, velocity slip parameter, critical shear rate, magnetic factor and stagnation parameter leads to an increased Nusselt number. The modeled problem is validated by comparing the current results with established work for different values of nonlinear stretching factor $n$ in terms of the drag force and thermal flow rate at $\eta =0$, and a good agreement is observed between the current and established results.
Keywords:  magneto-hydrodynamics (MHD)      Cattaneo-Christov heat fluid model      Thompson and Troian slip      thermal radiation      nonlinear stretching sheet  
Received:  06 April 2025      Revised:  03 May 2025      Accepted manuscript online:  15 May 2025
PACS:  44.05.+e (Analytical and numerical techniques)  
  44.40.+a (Thermal radiation)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.70.-a (Thermodynamics)  
Fund: This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2025/R/1446).
Corresponding Authors:  Anwar Saeed     E-mail:  anwarsaeed769@gmail.com

Cite this article: 

Anwar Saeed and Afrah Al-Bossly Cattaneo-Christov heat transfer model for tangent hyperbolic fluid with Thompson-Torian slip and melting effects 2025 Chin. Phys. B 34 094404

[1] Cham B M, Islam S U, Majeed A H, Ali M R and Hendy A S 2024 Case Stud. Therm. Eng. 61 104905
[2] Ali A, Hussain S and Ashraf M 2024 J. Radiat. Res. Appl. Sci. 17 101029
[3] Anwar M S, Irfan M and Muhammad T 2024 ZAMM-J. Appl. Math. Mech. 104 e202301048
[4] Modestov M, Khomenko E, Vitas N, de Vicente A, Navarro A, González-Morales P A and Gomez Miguez M M 2024 Sol. Phys. 299 23
[5] Sudarmozhi K, Iranian D and Al-Mdallal Q M 2024 Int. J. Thermofluids 22 100662
[6] Khan A, Gul T, Ali I, Khalifa H A E W, Muhammad T, Alghamdi W and Shaaban A A 2024 Int. J. Heat Fluid Flow 106 109295
[7] Galal A M, Alharbi F M, Arshad M, Alam M M, Abdeljawad T and Al-Mdallal Q M 2024 Sci. Rep. 14 1207
[8] Rai P and Mishra U 2024 Int. J. Heat Technol. 42 960
[9] Fourier J B J 1878 Theorie Analytique de la Chaleur (Cambridge University Press)
[10] Cattaneo C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83
[11] Christov C I 2009 Mech. Res. Commun. 36 481
[12] Nabwey H A, Abbas Khan A, Ashraf M, Rashad A M, Abdelrahman Z M and Abu Hawsah M 2024 PLoS One 19 e0304794
[13] Madhukesh J K, Ramesh G K, Shehzad S A, Chapi S and Prabhu Kushalappa I 2024 Numer. Heat Transf. Part A 85 2008
[14] Sarma N and Paul A 2024 Numer. Heat Transf. Part B 1
[15] Ullah R, Israr Ur Rehman M, Hamid A, Arooj S and Khan W A 2024 Mol. Phys. 122 e2288701
[16] Karthik S, Iranian D and Al-Mdallal Q M 2024 Int. J. Thermofluids 22 100616
[17] Mishra A 2024 Hybrid Adv. 6 100262
[18] Ramzan M, Naseer S, Shahmir N, Alshehri M H, Liu C and Kadry S 2024 Numer. Heat Transf. Part A 1
[19] Puneeth V, Sini K, Clair T and AnwarMS 2025 Multiscale Multidiscip. Model. Exp. Des. 8 1
[20] Shaheen N, Ramzan M, Saleel C A and Kadry S 2024 Proc. Inst. Mech. Eng. Part N 23977914231225174
[21] Reddy S R R, Jakeer S, Sathishkumar V E, Basha H T and Cho J 2024 Case Stud. Therm. Eng. 53 103794
[22] Gupta T, Kumar Pandey A and Kumar M 2024 Mod. Phys. Lett. B 38 2350209
[23] Mehmood Y, Alsinai A, Niazi A U K, Bilal M and Akhtar T 2024 Discov. Appl. Sci. 6 534
[24] Li S, Naseer S, Shahmir N, Ramzan M, Alkarni S and Kadry S 2024 ZAMM-J. Appl. Math. Mech. e202400098
[25] Sarfraz G, Khan S U, Ching D L C, Khan I, Mir A, Khan Y and Kolsi L 2024 J. Radiat. Res. Appl. Sci. 17 101117
[26] Sohail M, Abodayeh K and Nazir U 2024 Mech. Time-Depend. Mater. 28 1049
[27] Ali A, Hussain S and Ashraf M 2024 J. Radiat. Res. Appl. Sci. 17 101029
[28] Khan Z H, Khan W A, Ibrahim S M, Swain K and Huang Z 2024 Case Stud. Therm. Eng. 61 104906
[29] Algehyne E A, Alamrani F M, Lone S A, Ali F, Saeed A and Khan A 2024 Adv. Mech. Eng. 16 16878132241282017
[30] Dehghan Afifi M, Jalili B, Mirzaei A, Jalili P and Ganji D 2024 World J. Eng.
[31] Wang J, Farooq U,Waqas H, Muhammad T, Khan S A, Hendy A S and Ali M R 2024 Case Stud. Therm. Eng. 54 103967
[32] Al-Zubaidi A, Nazeer M, Zafar Z, Ali Z and Ramesh K 2024 Multiscale Multidiscip. Model. Exp. Des. 7 5933
[33] Alao S, Salawu S O, Oderinu R A, Oyewumi A A and Akinola E I 2024 Int. J. Thermofluids 22 100600
[34] Bansal S, Kumar A, Pal J, Goyal I and Negi A S 2024 J. Phys. Conf. Ser. 2844 012018
[35] Abbas W, Megahed A M and Fares E 2024 Sci. Rep. 14 7712
[36] Nadeem S, Fuzhang W, Alharbi F M, Sajid F, Abbas N, El-Shafay A S and Al-Mubaddel F S 2022 Alexandria Eng. J. 61 1769
[37] Shaiq S, Butt H A and Ahmed A 2024 Multiscale Multidiscip. Model. Exp. Des. 7 5515
[38] Samat N A A, Bachok N and Arifin N M 2024 Computation 12 46
[39] Sowmiya C and Rushi Kumar B 2024 Int. J. Mod. Phys. B 38 2450348
[40] Choudhary P, Choudhary S, Jat K, Loganathan K and Eswaramoorthi S 2024 Int. J. Thermofluids 23 100788
[41] Thompson P A and Troian S M 1997 Nature 389 360
[42] Vajravelu K 2001 Appl. Math. Comput. 124 281
[43] Liao S J 2012 Homotopy Analysis Method in Non-linear Differential Equations (Springer)
[44] Liao S 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (CRC Press)
[45] Liao S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2003
[46] Liao S 2004 Appl. Math. Comput. 147 499
[1] Performance analysis of porous solar absorbers with high-temperature radiation cooling function
Haiyan Yu(于海燕), Anqi Chen(陈安琪), Mingdong Li(李明东), Ahali Hailati(阿哈里·海拉提), Xiaohu Wu(吴小虎), and Xiaohan Ren(任霄汉). Chin. Phys. B, 2025, 34(6): 068102.
[2] Experimental study on the regulation of radiative heat flux by coating SiC film
Haifeng Xia(閤海峰) and Huihui Sun(孙慧慧). Chin. Phys. B, 2025, 34(5): 054402.
[3] Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation, energy omission
Saleem Nasir, Sekson Sirisubtawee, Pongpol Juntharee, and Taza Gul. Chin. Phys. B, 2024, 33(5): 050204.
[4] Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO2/SiO2/Si3N4 micron particles
Yang-Chun Zhao(赵洋春) and Yong-Min Zhou(周勇敏). Chin. Phys. B, 2023, 32(11): 114401.
[5] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[6] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[7] Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si
Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文). Chin. Phys. B, 2016, 25(12): 126104.
[8] Spectral enhancement of thermal radiation by laser fabricating grating structure on nickel surface
Liu Song (刘嵩), Liu Shi-Bing (刘世炳). Chin. Phys. B, 2015, 24(5): 054401.
[9] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[10] Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation
Swati Mukhopadhyay. Chin. Phys. B, 2014, 23(1): 014702.
[11] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
[12] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun (谢志堃), Pan Wei-Zhen (潘伟珍), Yang Xue-Jun (杨学军). Chin. Phys. B, 2013, 22(3): 039701.
[13] A possible mechanism for magnetar soft X-ray/$\gamma$-ray emission
Gao Zhi-Fu(高志福), Peng Qiu-He(彭秋和), Wang Na(王娜), and Chou Chih-Kang(邹志刚) . Chin. Phys. B, 2012, 21(5): 057109.
[14] Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation
Pan Wei-Zhen(潘伟珍),Yang Xue-Jun(杨学军),and Xie Zhi-Kun(谢志堃) . Chin. Phys. B, 2011, 20(4): 049701.
[15] Thermal radiation and nonthermal radiation of the slowly changing dynamic Kerr--Newman black hole
Meng Qing-Miao(孟庆苗), Wang Shuai(王帅), Jiang Ji-Jian(蒋继建), and Deng De-Li(邓德力). Chin. Phys. B, 2008, 17(8): 2811-2816.
No Suggested Reading articles found!