Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 093101    DOI: 10.1088/1674-1056/ade065
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Lasing and fluorescence of air plasma in presence of an external electric field

Kai-Lu Wang(王凯璐), Hai-Cheng Mei(梅海城), Liang Xu(许亮), and Yi Liu(刘一)†
Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Cavity-free lasing of nitrogen molecules pumped by intense femtosecond laser pulses holds the potential for remote sensing of electric fields. Here we compared the influence of an external direct current (DC) electric field on both the directional lasing radiation and omnidirectional fluorescence emission of neutral nitrogen molecules. It was found that the forward lasing radiation in both pure nitrogen gas and ambient air shows a sensitive dependence on the direction and strength of the DC field, while the fluorescence is not influenced. The effect of pump laser polarization was also investigated. The distinct behavior of the lasing and fluorescence in response to the DC field was attributed to their different dependences on the population distribution of excited nitrogen molecules. This study consolidates the method for standoff detection of electric field with an air lasing effect in the atmosphere.
Keywords:  femtosecond filamentation      air plasma      remote sensing  
Received:  28 February 2025      Revised:  22 May 2025      Accepted manuscript online:  04 June 2025
PACS:  31.70.-f (Effects of atomic and molecular interactions on electronic structure)  
  34.50.Gb (Electronic excitation and ionization of molecules)  
  34.90.+q (Other topics in atomic and molecular collision processes and interactions)  
  52.38.-r (Laser-plasma interactions)  
Fund: Project supported by the Natural National Science Foundation of China (Grant Nos. 12034013 and 12204308) and Science and Technology Commission of Shanghai Municipality (Grant No. 22ZR1444100).
Corresponding Authors:  Yi Liu     E-mail:  yi.liu@usst.edu.cn

Cite this article: 

Kai-Lu Wang(王凯璐), Hai-Cheng Mei(梅海城), Liang Xu(许亮), and Yi Liu(刘一) Lasing and fluorescence of air plasma in presence of an external electric field 2025 Chin. Phys. B 34 093101

[1] Couairon A and Mysyrowicz A 2007 Phys. Rep. 441 47
[2] Kandidov V P, Kosareva O G, Golubtsov I S, Liu W, Becker A, Akozbek N, Bowden C M and Chin S L 2003 Appl. Phys. B 77 149
[3] Bergé L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633
[4] Braun A, Korn G, Liu X, Du D, Squier J andMourou G 1995 Opt. Lett. 20 73
[5] Chin S L, Wang T J, Marceau C, Wu J, Liu J S, Kosareva O, Panov N, Chen Y P, Daigle J F, Yuan S, Azarm A, Liu W W, Seideman T, Zeng H P, Richardson M, Li R and Xu Z Z 2012 Laser Phys. 22 1
[6] Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, André Y B, Mysyrowicz A, Sauerbrey R, Wolf J P and Wöste L 2003 Science 301 61
[7] Yu J, Mondelain D, Kasparian J, Salmon E, Geffroy S, Favre C, Boutou V and Wolf J P 2003 Appl. Opt. 42 7117
[8] Zhang X, Lu Q, Zhu Y L, Zhao J, Danylo R, Xu L, LeiMW, Jiang H B, Wu C Y, Zhang Z D, Houard A, Tikhonchuk V, Mysyrowicz A, Gong Q H, Zhuang S L, Zhao Z X and Liu Y 2024 Ultrafast Sci. 4 0051
[9] Yang H, Zhang J, Yu W, Li Y J and Wei Z Y 2001 Phys. Rev. E 65 016406
[10] Zhang J, Hao Z Q, Yuan X H, Zhang Z Y, Zhang Z, Yu J, Lu X, Xi T T, Wang Z H, Zhong J Y, Jin Z, Liu Y Q, Ling W J, Zhao W, Wei Z Y 2006 Chin. J. Quantum Electron. 23 282
[11] Marburger J H 1975 Prog. Quant. Electr. 4 35
[12] Chin S L, Théberge F and Liu W 2007 Appl. Phys. B 86 477
[13] Uryupina D, Kurilova M, Mazhorova A, Panov N, Volkov R, Gorgutsa S, Kosareva O, Savel’ev A and Chin S L 2010 J. Opt. Soc. Am. B 27 667
[14] Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U 2004 Appl. Phys. B 79 673
[15] Chen X W, Leng Y X, Liu J, Zhu Y, Li R X and Xu Z Z 2006 Opt. Commun. 259 331
[16] Gravel J F, Luo Q, Boudreau D, Tang X P and Chin S L 2004 Anal. Chem. 76 4799
[17] Qi P F, Qian W Q, Guo L J, Xue J Y, Zhang N, Wang Y Z, Zhang Z, Zhang Z L, Lin L, Sun C L, Zhu L G and Liu W W 2022 Sensors 22 7076
[18] Schillinger H, Sauerbrey R 1999 Appl. Phys. B 68 753
[19] Wolf J P 2018 Rep. Prog. Phys. 81 026001
[20] Houard A, Walch P, Produit T, Moreno V, Mahieu B, Sunjerga A, Herkommer C, Mostajabi A, Andral U, André Y B, Lozano M, Bizet L, Schroeder M C, Schimmel G, Moret M, Stanley M, Rison W A, Maurice O, Esmiller B, Michel K, Haas W, Metzger T, Rubinstein M, Rachidi F, Cooray V, Mysyrowicz A, Kasparian J and Wolf J P 2023 Nat. Photon. 17 231
[21] Sudrie L, Franco M, Prade B and Mysyrowicz A 2001 Opt. Commun. 191 333
[22] Zhan X P, Xu H L, Li C H, Zang H W, Liu C, Zhao J H and Sun H B 2017 Opt. Lett. 42 510
[23] Sugiyama K, Fujii T, Miki M, Yamaguchi M, Zhidkov A, Hotta E and Nemoto K 2009 Opt. Lett. 34 2964
[24] Liu J L and Zhang X C 2009 Phys. Rev. Lett. 103 235002
[25] Liu J L, Dai J M, Chin S L and Zhang X C 2010 Nat. Photon. 4 627
[26] Mitryukovskiy S, Liu Y, Ding P J, Houard A and Mysyrowicz A 2014 Opt. Express 22 12750
[27] Ding P J, Oliva E, Houard A, Mysyrowicz A and Liu Y 2016 Phys. Rev. A 94 043824
[28] Gui J Y, Zhou D J, Zhang X, Lu Q, Luo Y, Liang Q Q, Danylo R, Houard A, Mysyrowicz A and Liu Y 2020 Acta Photonica Sin. 49 1149013
[29] Ding P J, Escudero J C, Houard A, Sanchis A, Vera J, Vicéns S, Liu Y and Oliva E 2017 Phys. Rev. A 96 033810
[30] Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A and Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003
[31] Danylo R, Zhang X, Fan Z Q, Zhou D J, Lu Q, Zhou B, Liang Q Q, Zhuang S L, Houard A, Mysyrowicz A, Oliva E and Liu Y 2019 Phys. Rev. Lett. 123 243203
[32] Zhang X, Lu Q, Mei H C, Qin S Y, Gao Y, Houard A, Tikhonchuk V, Mysyrowicz A, Xu L and Liu Y 2023 Phys. Rev. A 108 033513
[33] Sentoku Y and Kemp A J 2008 J. Comput. Phys. 227 6846
[34] Dong N N, Zhou Y, Pang S B, Huang X D, Liu K, Deng L H and Xu H L 2021 Chin. Phys. Lett. 38 043301
[35] Beresna M, Kazansky P G, Svirko Y, Barkauskas M and Danielius R 2009 Appl. Phys. Lett. 95 121502
[36] Xu Y, Sun Z, Liu Y X, Wang T J, Wei Y X and Leng Y X 2025 Opt. Lett. 50 550
[37] Dai J M, Xie X and Zhang X C 2006 Phys. Rev. Lett. 97 103903
[1] Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习). Chin. Phys. B, 2024, 33(5): 050502.
[2] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[3] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[4] Influences of substrate temperature on microstructure and corrosion behavior of APS Ni50Ti25Al25 inter-metallic coating
Sh Khandanjou, M Ghoranneviss, Sh Saviz, M Reza Afshar. Chin. Phys. B, 2018, 27(2): 028104.
[5] Dense pair plasma generation by two laser pulses colliding in a cylinder channel
Jian-Xun Liu(刘建勋), Yan-Yun Ma(马燕云), Tong-Pu Yu(余同普), Jun Zhao(赵军), Xiao-Hu Yang(杨晓虎), De-Bin Zou(邹德滨), Guo-Bo Zhang(张国博), Yuan Zhao(赵媛), Jing-Kang Yang(杨靖康), Han-Zhen Li(李汉臻), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), Shigeo Kawata. Chin. Phys. B, 2017, 26(3): 035202.
[6] Reflective ghost imaging free from vibrating detectors
Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉). Chin. Phys. B, 2017, 26(10): 104204.
[7] Femtosecond filamentation induced fluorescence technique for atmospheric sensing
Yuan Shuai (袁帅), Chin See Leang (陈瑞良), Zeng He-Ping (曾和平). Chin. Phys. B, 2015, 24(1): 014208.
[8] Determination of temporal structure of femtosecond laser pulses by means of the laser-induced air plasma
Zhang Nan (张楠), Bao Wen-Xia (包文霞), Yang Jing-Hui (杨景辉), Zhu Xiao-Nong (朱晓农). Chin. Phys. B, 2013, 22(5): 054209.
[9] Monitoring of the ducting by a ground-based GPS receiver
Sheng Zheng (盛峥), Fang Han-Xian (方涵先). Chin. Phys. B, 2013, 22(2): 029301.
[10] Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei
Cheng Si-Yang (程巳阳), Xu Liang (徐亮), Gao Min-Guang (高闽光), Li Sheng (李胜), Jin Ling (金岭), Tong Jing-Jing (童晶晶), Wei Xiu-Li (魏秀丽), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清). Chin. Phys. B, 2013, 22(12): 129201.
[11] The dependence on optical energy of terahertz emission from air plasma induced by two-color femtosecond laser-pulses
Wu Si-Qing (吴四清), Liu Jin-Song (刘劲松), Wang Sheng-Lie (汪盛烈), Hu Bing (胡兵). Chin. Phys. B, 2013, 22(10): 104207.
[12] Remote sensing of atmospheric duct parameters using simulated annealing
Zhao Xiao-Feng(赵小峰), Huang Si-Xun(黄思训), Xiang Jie(项杰), and Shi Wei-Lai(施伟来) . Chin. Phys. B, 2011, 20(9): 099201.
[13] Noise analysis and measurement of time delay and integration charge coupled device
Wang De-Jiang(王德江) and Zhang Tao(张涛) . Chin. Phys. B, 2011, 20(8): 087202.
[14] Dynamical behaviour of transverse plasmons in pair plasmas
Liu San-Qiu(刘三秋), Liu Yong(刘勇), and Li Xiao-Qing(李晓卿). Chin. Phys. B, 2011, 20(1): 015203.
[15] Thomson scattering off a pair (electron--positron) plasma
Zheng Jian (郑坚). Chin. Phys. B, 2006, 15(5): 1028-1034.
No Suggested Reading articles found!