|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
Lasing and fluorescence of air plasma in presence of an external electric field |
| Kai-Lu Wang(王凯璐), Hai-Cheng Mei(梅海城), Liang Xu(许亮), and Yi Liu(刘一)† |
| Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
|
|
Abstract Cavity-free lasing of nitrogen molecules pumped by intense femtosecond laser pulses holds the potential for remote sensing of electric fields. Here we compared the influence of an external direct current (DC) electric field on both the directional lasing radiation and omnidirectional fluorescence emission of neutral nitrogen molecules. It was found that the forward lasing radiation in both pure nitrogen gas and ambient air shows a sensitive dependence on the direction and strength of the DC field, while the fluorescence is not influenced. The effect of pump laser polarization was also investigated. The distinct behavior of the lasing and fluorescence in response to the DC field was attributed to their different dependences on the population distribution of excited nitrogen molecules. This study consolidates the method for standoff detection of electric field with an air lasing effect in the atmosphere.
|
Received: 28 February 2025
Revised: 22 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
31.70.-f
|
(Effects of atomic and molecular interactions on electronic structure)
|
| |
34.50.Gb
|
(Electronic excitation and ionization of molecules)
|
| |
34.90.+q
|
(Other topics in atomic and molecular collision processes and interactions)
|
| |
52.38.-r
|
(Laser-plasma interactions)
|
|
| Fund: Project supported by the Natural National Science Foundation of China (Grant Nos. 12034013 and 12204308) and Science and Technology Commission of Shanghai Municipality (Grant No. 22ZR1444100). |
Corresponding Authors:
Yi Liu
E-mail: yi.liu@usst.edu.cn
|
Cite this article:
Kai-Lu Wang(王凯璐), Hai-Cheng Mei(梅海城), Liang Xu(许亮), and Yi Liu(刘一) Lasing and fluorescence of air plasma in presence of an external electric field 2025 Chin. Phys. B 34 093101
|
[1] Couairon A and Mysyrowicz A 2007 Phys. Rep. 441 47 [2] Kandidov V P, Kosareva O G, Golubtsov I S, Liu W, Becker A, Akozbek N, Bowden C M and Chin S L 2003 Appl. Phys. B 77 149 [3] Bergé L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633 [4] Braun A, Korn G, Liu X, Du D, Squier J andMourou G 1995 Opt. Lett. 20 73 [5] Chin S L, Wang T J, Marceau C, Wu J, Liu J S, Kosareva O, Panov N, Chen Y P, Daigle J F, Yuan S, Azarm A, Liu W W, Seideman T, Zeng H P, Richardson M, Li R and Xu Z Z 2012 Laser Phys. 22 1 [6] Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, André Y B, Mysyrowicz A, Sauerbrey R, Wolf J P and Wöste L 2003 Science 301 61 [7] Yu J, Mondelain D, Kasparian J, Salmon E, Geffroy S, Favre C, Boutou V and Wolf J P 2003 Appl. Opt. 42 7117 [8] Zhang X, Lu Q, Zhu Y L, Zhao J, Danylo R, Xu L, LeiMW, Jiang H B, Wu C Y, Zhang Z D, Houard A, Tikhonchuk V, Mysyrowicz A, Gong Q H, Zhuang S L, Zhao Z X and Liu Y 2024 Ultrafast Sci. 4 0051 [9] Yang H, Zhang J, Yu W, Li Y J and Wei Z Y 2001 Phys. Rev. E 65 016406 [10] Zhang J, Hao Z Q, Yuan X H, Zhang Z Y, Zhang Z, Yu J, Lu X, Xi T T, Wang Z H, Zhong J Y, Jin Z, Liu Y Q, Ling W J, Zhao W, Wei Z Y 2006 Chin. J. Quantum Electron. 23 282 [11] Marburger J H 1975 Prog. Quant. Electr. 4 35 [12] Chin S L, Théberge F and Liu W 2007 Appl. Phys. B 86 477 [13] Uryupina D, Kurilova M, Mazhorova A, Panov N, Volkov R, Gorgutsa S, Kosareva O, Savel’ev A and Chin S L 2010 J. Opt. Soc. Am. B 27 667 [14] Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U 2004 Appl. Phys. B 79 673 [15] Chen X W, Leng Y X, Liu J, Zhu Y, Li R X and Xu Z Z 2006 Opt. Commun. 259 331 [16] Gravel J F, Luo Q, Boudreau D, Tang X P and Chin S L 2004 Anal. Chem. 76 4799 [17] Qi P F, Qian W Q, Guo L J, Xue J Y, Zhang N, Wang Y Z, Zhang Z, Zhang Z L, Lin L, Sun C L, Zhu L G and Liu W W 2022 Sensors 22 7076 [18] Schillinger H, Sauerbrey R 1999 Appl. Phys. B 68 753 [19] Wolf J P 2018 Rep. Prog. Phys. 81 026001 [20] Houard A, Walch P, Produit T, Moreno V, Mahieu B, Sunjerga A, Herkommer C, Mostajabi A, Andral U, André Y B, Lozano M, Bizet L, Schroeder M C, Schimmel G, Moret M, Stanley M, Rison W A, Maurice O, Esmiller B, Michel K, Haas W, Metzger T, Rubinstein M, Rachidi F, Cooray V, Mysyrowicz A, Kasparian J and Wolf J P 2023 Nat. Photon. 17 231 [21] Sudrie L, Franco M, Prade B and Mysyrowicz A 2001 Opt. Commun. 191 333 [22] Zhan X P, Xu H L, Li C H, Zang H W, Liu C, Zhao J H and Sun H B 2017 Opt. Lett. 42 510 [23] Sugiyama K, Fujii T, Miki M, Yamaguchi M, Zhidkov A, Hotta E and Nemoto K 2009 Opt. Lett. 34 2964 [24] Liu J L and Zhang X C 2009 Phys. Rev. Lett. 103 235002 [25] Liu J L, Dai J M, Chin S L and Zhang X C 2010 Nat. Photon. 4 627 [26] Mitryukovskiy S, Liu Y, Ding P J, Houard A and Mysyrowicz A 2014 Opt. Express 22 12750 [27] Ding P J, Oliva E, Houard A, Mysyrowicz A and Liu Y 2016 Phys. Rev. A 94 043824 [28] Gui J Y, Zhou D J, Zhang X, Lu Q, Luo Y, Liang Q Q, Danylo R, Houard A, Mysyrowicz A and Liu Y 2020 Acta Photonica Sin. 49 1149013 [29] Ding P J, Escudero J C, Houard A, Sanchis A, Vera J, Vicéns S, Liu Y and Oliva E 2017 Phys. Rev. A 96 033810 [30] Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A and Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003 [31] Danylo R, Zhang X, Fan Z Q, Zhou D J, Lu Q, Zhou B, Liang Q Q, Zhuang S L, Houard A, Mysyrowicz A, Oliva E and Liu Y 2019 Phys. Rev. Lett. 123 243203 [32] Zhang X, Lu Q, Mei H C, Qin S Y, Gao Y, Houard A, Tikhonchuk V, Mysyrowicz A, Xu L and Liu Y 2023 Phys. Rev. A 108 033513 [33] Sentoku Y and Kemp A J 2008 J. Comput. Phys. 227 6846 [34] Dong N N, Zhou Y, Pang S B, Huang X D, Liu K, Deng L H and Xu H L 2021 Chin. Phys. Lett. 38 043301 [35] Beresna M, Kazansky P G, Svirko Y, Barkauskas M and Danielius R 2009 Appl. Phys. Lett. 95 121502 [36] Xu Y, Sun Z, Liu Y X, Wang T J, Wei Y X and Leng Y X 2025 Opt. Lett. 50 550 [37] Dai J M, Xie X and Zhang X C 2006 Phys. Rev. Lett. 97 103903 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|