Abstract Thomson scattering off a pair (electron--positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering off a collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.
Received: 06 November 2005
Revised: 21 December 2005
Accepted manuscript online:
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10375064), and the
National High Technology Inertial Confinement Fusion.
Cite this article:
Zheng Jian (郑坚) Thomson scattering off a pair (electron--positron) plasma 2006 Chinese Physics 15 1028
[1]
Dense pair plasma generation by two laser pulses colliding in a cylinder channel Jian-Xun Liu(刘建勋), Yan-Yun Ma(马燕云), Tong-Pu Yu(余同普), Jun Zhao(赵军), Xiao-Hu Yang(杨晓虎), De-Bin Zou(邹德滨), Guo-Bo Zhang(张国博), Yuan Zhao(赵媛), Jing-Kang Yang(杨靖康), Han-Zhen Li(李汉臻), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), Shigeo Kawata. Chin. Phys. B, 2017, 26(3): 035202.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.