Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 099201    DOI: 10.1088/1674-1056/20/9/099201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Remote sensing of atmospheric duct parameters using simulated annealing

Zhao Xiao-Feng(赵小峰), Huang Si-Xun(黄思训), Xiang Jie(项杰), and Shi Wei-Lai(施伟来)
Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China
Abstract  Simulated annealing is one of the robust optimization schemes. Simulated annealing mimics the annealing process of the slow cooling of a heated metal to reach a stable minimum energy state. In this paper, we adopt simulated annealing to study the problem of the remote sensing of atmospheric duct parameters for two different geometries of propagation measurement. One is from a single emitter to an array of radio receivers (vertical measurements), and the other is from the radar clutter returns (horizontal measurements). Basic principles of simulated annealing and its applications to refractivity estimation are introduced. The performance of this method is validated using numerical experiments and field measurements collected at the East China Sea. The retrieved results demonstrate the feasibility of simulated annealing for near real-time atmospheric refractivity estimation. For comparison, the retrievals of the genetic algorithm are also presented. The comparisons indicate that the convergence speed of simulated annealing is faster than that of the genetic algorithm, while the anti-noise ability of the genetic algorithm is better than that of simulated annealing.
Keywords:  remote sensing      refractivity estimation      electromagnetic wave propagation      simulated annealing  
Received:  19 January 2011      Revised:  19 May 2011      Accepted manuscript online: 
PACS:  92.60.Ta (Electromagnetic wave propagation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  02.30.Zz (Inverse problems)  

Cite this article: 

Zhao Xiao-Feng(赵小峰), Huang Si-Xun(黄思训), Xiang Jie(项杰), and Shi Wei-Lai(施伟来) Remote sensing of atmospheric duct parameters using simulated annealing 2011 Chin. Phys. B 20 099201

[1] Halvey R A 1983 Proc. IEEE Part F 130 643
[2] Richter J H 1969 Radio Sci. 4 1261
[3] Rogers L T, Hattan C P and Stapleton J K 2000 Radio Sci. 35 955
[4] Gerstoft P, Rogers L T, Krolik J L and Hodgkiss W S 2003 Radio Sci. 38 8053
[5] Gerstoft P, Rogers L T, Hodgkiss W S and Wagner L J 2003 IEEE J. Oceanic Eng. 28 513
[6] Barrios A E 2004 Radio Sci. 39 RS6013
[7] Vasudevan S, Anderson R H, Kraut S, Gerstoft P, Rogers L T and Krolik J 2007 Radio Sci. 42 RS2014
[8] Yardim C 2007 Statistical Estimation and Tracking of Refractivity from Radar Clutter (Ph.D. Dissertation) (San Diego: University of California San Diego)
[9] Douvenot R, Fabbro V, Gerstoft P, Bourlier C and Saillard J 2008 Radio Sci. 43 RS6005
[10] Douvenot R, Fabbro V, Gerstoft P, Bourlier C and Saillard J 2010 Radio Sci. 45 RS1007
[11] Huang S X, Zhao X F and Sheng Z 2009 Chin. Phys. B 18 5084
[12] Sheng Z, Huang S X and Zhao X F 2009 Acta Phys. Sin. 58 6627 (in Chinese)
[13] Wang B, Wu Z S, Zhao Z W and Wang H G 2009 Prog. Electromagn. Res. M 9 79
[14] Zhao X F, Huang S X and Sheng Z 2010 Chin. Phys. B 19 049201
[15] Gingras D F, Gerstoft P and Gerr N L 1997 IEEE Trans. Antennas Propagat. 45 1536
[16] Tabrikian J and Krolik J L 1999 IEEE Trans. Antennas Propag. 47 1727
[17] Gerstoft P, Gingras D F, Rogers L T and Hodgkiss W S 2000 IEEE Trans. Antennas Propagat. 48 345
[18] Valtr P and Pechac P 2005 XXVIIIth General Assembly of International Union of Radio Science, October 23—29, 2005, New Delhi, India
[19] Zhao X F, Huang S X and Du H D 2011 Radio Sci. 46 RS1006
[20] Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Science 220 671
[21] Lam J 1988 An Efficient Simulated Annealing Schedule (Ph.D. Dissertation) (New Haven: Yale University)
[22] Hitney H V and Vieth R 1990 IEEE Trans. Antennas Propag. 38 794
[23] Rogers L T 1997 Radio Sci. 32 79
[24] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
[25] Goffe W L, Ferrier G D and Rogers J 1994 J. Econometrics 60 65
[26] http://emlab.berkeley.edu/Software/abstracts/goffe895.html
[27] Kuttler J R and Dockery G D 1991 Radio Sci. 26 381
[28] Barrios A E and Patterson W L 2002 Advanced Propagation Model (APM) Ver. 1.3.1 Computer Software Configuration Item (CSCI) Documents Technical Document 3145, San Diego, California
[29] Wang B, Wu Z S, Zhao Z W and Wang H G 2009 Chin. J. Radio Sci. 24 598 (in Chinese)
[1] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[2] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[3] Photonic crystal structures: Beam deflector and beam router
Utku Erdiven, Erkan Tetik, Faruk Karadag. Chin. Phys. B, 2018, 27(4): 044204.
[4] Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method
Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲). Chin. Phys. B, 2017, 26(6): 063601.
[5] Ranking important nodes in complex networks by simulated annealing
Yu Sun(孙昱), Pei-Yang Yao(姚佩阳), Lu-Jun Wan(万路军), Jian Shen(申健), Yun Zhong(钟赟). Chin. Phys. B, 2017, 26(2): 020201.
[6] Reflective ghost imaging free from vibrating detectors
Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉). Chin. Phys. B, 2017, 26(10): 104204.
[7] Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm
Xin-Ze Lu(陆欣泽), Gui-Fang Shao(邵桂芳), Liang-You Xu(许两有), Tun-Dong Liu(刘暾东), Yu-Hua Wen(文玉华). Chin. Phys. B, 2016, 25(5): 053601.
[8] Influence of obstacle on electromagnetic wave propagation in evaporation duct with experiment verification
Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良). Chin. Phys. B, 2015, 24(5): 054101.
[9] Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation
Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良). Chin. Phys. B, 2015, 24(4): 044102.
[10] Role of the aperture in Z-scan experiments: A parametric study
M. R. Rashidian Vaziri. Chin. Phys. B, 2015, 24(11): 114206.
[11] Femtosecond filamentation induced fluorescence technique for atmospheric sensing
Yuan Shuai (袁帅), Chin See Leang (陈瑞良), Zeng He-Ping (曾和平). Chin. Phys. B, 2015, 24(1): 014208.
[12] Monitoring of the ducting by a ground-based GPS receiver
Sheng Zheng (盛峥), Fang Han-Xian (方涵先). Chin. Phys. B, 2013, 22(2): 029301.
[13] Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei
Cheng Si-Yang (程巳阳), Xu Liang (徐亮), Gao Min-Guang (高闽光), Li Sheng (李胜), Jin Ling (金岭), Tong Jing-Jing (童晶晶), Wei Xiu-Li (魏秀丽), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清). Chin. Phys. B, 2013, 22(12): 129201.
[14] Noise analysis and measurement of time delay and integration charge coupled device
Wang De-Jiang(王德江) and Zhang Tao(张涛) . Chin. Phys. B, 2011, 20(8): 087202.
[15] Memoryless cooperative graph search based on the simulated annealing algorithm
Hou Jian(候健), Yan Gang-Feng(颜钢锋), and Fan Zhen(樊臻) . Chin. Phys. B, 2011, 20(4): 048103.
No Suggested Reading articles found!