|
|
|
Chaos of cavity optomechanical system with Coulomb coupling |
| Yingjia Yang(杨应佳)1, Liwei Liu(刘利伟)1,†, Lianchun Yu(俞连春)2, Weizheng Kong(孔伟正)1, Haiyan Jiao(焦海燕)1, Xiaoyan Deng(邓小燕)1, and Xiaoyong Li(李小勇)1 |
1 College of Electrical Engineering, Key Laboratory for Electronic Materials of Northwest Minzu University, Northwest Minzu University, Lanzhou 730000, China; 2 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou 730000, China |
|
|
|
|
Abstract This study theoretically investigates chaos in a cavity optomechanical system with Coulomb coupling. The system consists of a Fabry-Pérot cavity with a movable mirror, where Coulomb interactions arise from charging the two movable mirrors. We examine the chaotic dynamics under the influence of both single and bichromatic laser fields. The single laser field represents a system driven exclusively by the pump field, whereas the bichromatic field represents simultaneous driving by both the pump and probe fields. In addition to conventional chaos-inducing methods through parameter variations, we demonstrate that increasing the Coulomb coupling strength enhances the system's nonlinearity and induces chaotic behavior. Furthermore, we propose several strategies for generating and controlling chaos, while also identifying the parameter ranges necessary for the resonance of the two mechanical oscillators. Interestingly, when adjusting the driving power in a system driven solely by the pump field, we unexpectedly observe the emergence of high-order sidebands. These findings contribute to the development of chaotic behavior in future cavity optomechanical systems and provide a theoretical basis for applications in physical random number generation and secure communication.
|
Received: 31 March 2025
Revised: 06 May 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
| |
42.50.-p
|
(Quantum optics)
|
| |
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
| |
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
| Fund: Project supported by Young Talents from Longyuan, Gansu Province (Liwei Liu), the Fundamental Research Funds for the Central Universities, Northwest Minzu University (Grant No. 31920230134), Teaching Achievement Cultivation Project of Gansu Province Department of Education (Grant No. 2022GSJXCGPY-46), Special research topic on curriculum and teaching materials for primary, secondary and higher schools, Gansu Province Department of Education (Grant No. GSJC-Y2024204), and Quality improvement project for undergraduate talent training, Northwest Minzu University (Grant Nos. 2024YBJG-04 and 2024FCTD-03). |
Corresponding Authors:
Liwei Liu
E-mail: liuliw@xbmu.edu.cn
|
Cite this article:
Yingjia Yang(杨应佳), Liwei Liu(刘利伟), Lianchun Yu(俞连春), Weizheng Kong(孔伟正), Haiyan Jiao(焦海燕), Xiaoyan Deng(邓小燕), and Xiaoyong Li(李小勇) Chaos of cavity optomechanical system with Coulomb coupling 2025 Chin. Phys. B 34 080503
|
[1] Lemonde M A, Didier N and Clerk A A 2013 Phys. Rev. Lett. 111 053602 [2] Zhang H, Eremeev V,Wu J, OrszagMand He B 2025 Phys. Rev. E 111 014208 [3] Barzanjeh S, Xuereb A, Gröblacher S, Paternostro M, Regal C A and Weig E 2022 Nat. Phys. 18 15 [4] Metzger C, Ludwig M, Neuenhahn C, Ortlied A, Favero I, Karrai K and Marquardt F 2008 Phys. Rev. Lett. 101 133903 [5] Dong C, Zhang J, Fiore V and Wang H 2014 Optica 1 425 [6] Xu X, Zhu H, Chen S and Zhang X 2024 Opt. Express 32 7611 [7] Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R and Wang C 2016 Sci. Rep. 6 22920 [8] Liu S, YangWX, Shui T, Zhu Z and Chen A X 2017 Sci. Rep. 7 17637 [9] Liu J H, Yu Y F, Wu Q, Wang J D and Zhang Z M 2021 Opt. Express 29 12266 [10] Carmon T, Cross M C and Vahala K J 2007 Phys. Rev. Lett. 98 167203 [11] Bakemeier L, Alvermann and Fehske H 2015 Phys. Rev. Lett. 114 013601 [12] Zhang D W, You C and Lü X Y 2020 Phys. Rev. A 101 053851 [13] Chen L T, Qin L G, Tian L J, Huang J H, Zhou N R and Gong S Q 2024 Chin. Phys. B 33 064204 [14] Dong L H,Wu X J, Bai C H andWu S X 2025 Chin. Phys. B 34 020304 [15] Li H M, Yang B H, Yuan H C and Xu Y J 2023 Chin. Phys. B 32 014202 [16] Elbert T, Ray W J, Kowalik Z J, Skinner J E, Graf K E and Birbaumer N 1994 Physiological Reviews 74 1 [17] Kippenberg T J and Vahala K J 2007 Opt. Express 15 17172 [18] Monifi F, Zhang J, Ozdemir S K, Peng B, Bo F, Nori F and Yang L 2016 Nat. Photon. 10 399 [19] Ma J, You C, Si L G., Xiong H, Li J, Yang X and Wu Y 2014 Phys. Rev. A 90 043839 [20] Zhang D W, Zheng L L, Wang M and Zhou Y and Lü X Y 2024 Phys. Rev. A 109 023529 [21] Ullah K, Jing H and Saif F 2018 Phys. Rev. A 97 033812 [22] Sohail A, Ahmed R, Yu C S and Munir T 2020 Phys. Scr. 95 035108 [23] Zhao Y N, Wang T, Wang D Y, Han X, Zhang S and Wang H F 2021 Photonics 8 384 [24] Wang Q, Zhang J Q, Ma P C, Yao C M and Feng M 2015 Phys. Rev. A 91 063827 [25] Wu Q, Zhang J Q, Wu J H, Feng M and Zhang Z M 2015 Opt. Express 23 018534 [26] Náprstek J and Fischer C 2021 Nonlinear Dyn. 106 1591 [27] Chapman R B and Plesset M S 1972 J. Basic Eng. 94 142 [28] Kippenberg T J, Spillane S M and Vahala K J 2004 Phys. Rev. Lett. 93 083904 [29] Rössler O E and Letellier C 2020 Chaos in Toroidal Systems (Cham: Springer) pp. 67–89 [30] Piergentili P, Natali R, Vitali D and Giuseppe G D 2022 Photonics 9 99 [31] Piergentili P, Li W, Natali R, Malossi N, Vitali D and Giuseppe G D 2021 New J. Phys. 23 073013 [32] Wang T, Han X, Liu S, Zhang S and Wang H F 2023 Adv. Quantum Technol. 6 2200162 [33] Ma P C, Yan L L, Chen G B, Li X and Zhan Y B 2016 Laser Phys. Lett. 13 125301 [34] Omari A 2019 Chin. J. Phys. 57 435 [35] He Q, Badshah F, Din R U, Zhang H, Hu Y and Ge G Q 2018 J. Opt. Soc. Am. B 35 1649 [36] Mekonnen H D, Tesfahannes T G, Darge T Y and Kumela A G 2023 Sci. Rep. 13 13800 [37] Yan X B 2021 J. Phys. B: Atom. Mol. Opt. Phys. 54 035401 [38] Yan X B 2020 Phys. Rev. A 101 043820 [39] Linsay P S 1981 Phys. Rev. Lett. 47 1349 [40] Awal N M and Epstein I R 2021 Phys. Rev. E 104 024211 [41] Kantz H 1994 Phys. Lett. A 185 77 [42] Pechuk V D, Krasnopolskaya T S and Pechuk E D 2022 Maximum lyapunov exponent calculation (Cham: Springer) pp. 327–335 [43] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825 [44] Tian L and Zoller P 2004 Phys. Rev. Lett. 93 266403 [45] Xia C C, Yan X B, Tian X D and Gao F 2019 Opt. Commun. 451 197 [46] Tanaka T 1998 Advances in Neural Information Processing Systems 11 351 [47] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [48] Skokos C 2010 The Lyapunov Characteristic Exponents and Their Computation (Berlin: Springer) pp. 63–135 [49] Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601 [50] Bai T R, Chen Z D, Zhang J Q, Yan D, He Z W, Zhang S, Zhao J and Yu Y 2023 Phys. Rev. A 107 033522 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|