Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 080503    DOI: 10.1088/1674-1056/add509
GENERAL Prev   Next  

Chaos of cavity optomechanical system with Coulomb coupling

Yingjia Yang(杨应佳)1, Liwei Liu(刘利伟)1,†, Lianchun Yu(俞连春)2, Weizheng Kong(孔伟正)1, Haiyan Jiao(焦海燕)1, Xiaoyan Deng(邓小燕)1, and Xiaoyong Li(李小勇)1
1 College of Electrical Engineering, Key Laboratory for Electronic Materials of Northwest Minzu University, Northwest Minzu University, Lanzhou 730000, China;
2 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou 730000, China
Abstract  This study theoretically investigates chaos in a cavity optomechanical system with Coulomb coupling. The system consists of a Fabry-Pérot cavity with a movable mirror, where Coulomb interactions arise from charging the two movable mirrors. We examine the chaotic dynamics under the influence of both single and bichromatic laser fields. The single laser field represents a system driven exclusively by the pump field, whereas the bichromatic field represents simultaneous driving by both the pump and probe fields. In addition to conventional chaos-inducing methods through parameter variations, we demonstrate that increasing the Coulomb coupling strength enhances the system's nonlinearity and induces chaotic behavior. Furthermore, we propose several strategies for generating and controlling chaos, while also identifying the parameter ranges necessary for the resonance of the two mechanical oscillators. Interestingly, when adjusting the driving power in a system driven solely by the pump field, we unexpectedly observe the emergence of high-order sidebands. These findings contribute to the development of chaotic behavior in future cavity optomechanical systems and provide a theoretical basis for applications in physical random number generation and secure communication.
Keywords:  cavity optomechanical system      Coulomb coupling      chaos      period bifurcation  
Received:  31 March 2025      Revised:  06 May 2025      Accepted manuscript online:  07 May 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  42.50.-p (Quantum optics)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by Young Talents from Longyuan, Gansu Province (Liwei Liu), the Fundamental Research Funds for the Central Universities, Northwest Minzu University (Grant No. 31920230134), Teaching Achievement Cultivation Project of Gansu Province Department of Education (Grant No. 2022GSJXCGPY-46), Special research topic on curriculum and teaching materials for primary, secondary and higher schools, Gansu Province Department of Education (Grant No. GSJC-Y2024204), and Quality improvement project for undergraduate talent training, Northwest Minzu University (Grant Nos. 2024YBJG-04 and 2024FCTD-03).
Corresponding Authors:  Liwei Liu     E-mail:  liuliw@xbmu.edu.cn

Cite this article: 

Yingjia Yang(杨应佳), Liwei Liu(刘利伟), Lianchun Yu(俞连春), Weizheng Kong(孔伟正), Haiyan Jiao(焦海燕), Xiaoyan Deng(邓小燕), and Xiaoyong Li(李小勇) Chaos of cavity optomechanical system with Coulomb coupling 2025 Chin. Phys. B 34 080503

[1] Lemonde M A, Didier N and Clerk A A 2013 Phys. Rev. Lett. 111 053602
[2] Zhang H, Eremeev V,Wu J, OrszagMand He B 2025 Phys. Rev. E 111 014208
[3] Barzanjeh S, Xuereb A, Gröblacher S, Paternostro M, Regal C A and Weig E 2022 Nat. Phys. 18 15
[4] Metzger C, Ludwig M, Neuenhahn C, Ortlied A, Favero I, Karrai K and Marquardt F 2008 Phys. Rev. Lett. 101 133903
[5] Dong C, Zhang J, Fiore V and Wang H 2014 Optica 1 425
[6] Xu X, Zhu H, Chen S and Zhang X 2024 Opt. Express 32 7611
[7] Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R and Wang C 2016 Sci. Rep. 6 22920
[8] Liu S, YangWX, Shui T, Zhu Z and Chen A X 2017 Sci. Rep. 7 17637
[9] Liu J H, Yu Y F, Wu Q, Wang J D and Zhang Z M 2021 Opt. Express 29 12266
[10] Carmon T, Cross M C and Vahala K J 2007 Phys. Rev. Lett. 98 167203
[11] Bakemeier L, Alvermann and Fehske H 2015 Phys. Rev. Lett. 114 013601
[12] Zhang D W, You C and Lü X Y 2020 Phys. Rev. A 101 053851
[13] Chen L T, Qin L G, Tian L J, Huang J H, Zhou N R and Gong S Q 2024 Chin. Phys. B 33 064204
[14] Dong L H,Wu X J, Bai C H andWu S X 2025 Chin. Phys. B 34 020304
[15] Li H M, Yang B H, Yuan H C and Xu Y J 2023 Chin. Phys. B 32 014202
[16] Elbert T, Ray W J, Kowalik Z J, Skinner J E, Graf K E and Birbaumer N 1994 Physiological Reviews 74 1
[17] Kippenberg T J and Vahala K J 2007 Opt. Express 15 17172
[18] Monifi F, Zhang J, Ozdemir S K, Peng B, Bo F, Nori F and Yang L 2016 Nat. Photon. 10 399
[19] Ma J, You C, Si L G., Xiong H, Li J, Yang X and Wu Y 2014 Phys. Rev. A 90 043839
[20] Zhang D W, Zheng L L, Wang M and Zhou Y and Lü X Y 2024 Phys. Rev. A 109 023529
[21] Ullah K, Jing H and Saif F 2018 Phys. Rev. A 97 033812
[22] Sohail A, Ahmed R, Yu C S and Munir T 2020 Phys. Scr. 95 035108
[23] Zhao Y N, Wang T, Wang D Y, Han X, Zhang S and Wang H F 2021 Photonics 8 384
[24] Wang Q, Zhang J Q, Ma P C, Yao C M and Feng M 2015 Phys. Rev. A 91 063827
[25] Wu Q, Zhang J Q, Wu J H, Feng M and Zhang Z M 2015 Opt. Express 23 018534
[26] Náprstek J and Fischer C 2021 Nonlinear Dyn. 106 1591
[27] Chapman R B and Plesset M S 1972 J. Basic Eng. 94 142
[28] Kippenberg T J, Spillane S M and Vahala K J 2004 Phys. Rev. Lett. 93 083904
[29] Rössler O E and Letellier C 2020 Chaos in Toroidal Systems (Cham: Springer) pp. 67–89
[30] Piergentili P, Natali R, Vitali D and Giuseppe G D 2022 Photonics 9 99
[31] Piergentili P, Li W, Natali R, Malossi N, Vitali D and Giuseppe G D 2021 New J. Phys. 23 073013
[32] Wang T, Han X, Liu S, Zhang S and Wang H F 2023 Adv. Quantum Technol. 6 2200162
[33] Ma P C, Yan L L, Chen G B, Li X and Zhan Y B 2016 Laser Phys. Lett. 13 125301
[34] Omari A 2019 Chin. J. Phys. 57 435
[35] He Q, Badshah F, Din R U, Zhang H, Hu Y and Ge G Q 2018 J. Opt. Soc. Am. B 35 1649
[36] Mekonnen H D, Tesfahannes T G, Darge T Y and Kumela A G 2023 Sci. Rep. 13 13800
[37] Yan X B 2021 J. Phys. B: Atom. Mol. Opt. Phys. 54 035401
[38] Yan X B 2020 Phys. Rev. A 101 043820
[39] Linsay P S 1981 Phys. Rev. Lett. 47 1349
[40] Awal N M and Epstein I R 2021 Phys. Rev. E 104 024211
[41] Kantz H 1994 Phys. Lett. A 185 77
[42] Pechuk V D, Krasnopolskaya T S and Pechuk E D 2022 Maximum lyapunov exponent calculation (Cham: Springer) pp. 327–335
[43] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[44] Tian L and Zoller P 2004 Phys. Rev. Lett. 93 266403
[45] Xia C C, Yan X B, Tian X D and Gao F 2019 Opt. Commun. 451 197
[46] Tanaka T 1998 Advances in Neural Information Processing Systems 11 351
[47] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[48] Skokos C 2010 The Lyapunov Characteristic Exponents and Their Computation (Berlin: Springer) pp. 63–135
[49] Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601
[50] Bai T R, Chen Z D, Zhang J Q, Yan D, He Z W, Zhang S, Zhao J and Yu Y 2023 Phys. Rev. A 107 033522
[1] Complexity dynamics analysis of a dual-channel green supply chain with government intervention and cap-and-trade regulation
Yuhao Zhang(张玉豪), Lin Huang(黄林), and Man Yang(杨满). Chin. Phys. B, 2025, 34(7): 070501.
[2] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[3] Model-free prediction of chaotic dynamics with parameter-aware reservoir computing
Jianmin Guo(郭建敏), Yao Du(杜瑶), Haibo Luo(罗海波), Xuan Wang(王晅), Yizhen Yu(于一真), and Xingang Wang(王新刚). Chin. Phys. B, 2025, 34(4): 040505.
[4] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[5] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[6] Impact of the chaotic semiconductor laser output power on time-delay-signature of chaos and random bit generation
Chenpeng Xue(薛琛鹏), Xu Wang(王绪), Likai Zheng(郑利凯), Haoyu Zhang(张昊宇), Yanhua Hong, and Zuxing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 030504.
[7] A novel variable-order fractional chaotic map and its dynamics
Zhouqing Tang(唐周青), Shaobo He(贺少波), Huihai Wang(王会海), Kehui Sun(孙克辉), Zhao Yao(姚昭), and Xianming Wu(吴先明). Chin. Phys. B, 2024, 33(3): 030503.
[8] Experimental test of an extension of the Rosenzweig-Porter model to mixed integrable-chaotic systems experiencing time-reversal invariance violation
Xiaodong Zhang(张晓东), Jiongning Che(车炯宁), and Barbara Dietz. Chin. Phys. B, 2024, 33(12): 120501.
[9] On fractional discrete financial system: Bifurcation, chaos, and control
Louiza Diabi, Adel Ouannas, Amel Hioual, Shaher Momani, and Abderrahmane Abbes. Chin. Phys. B, 2024, 33(10): 100201.
[10] Critical dispersion of chirped fiber Bragg grating for eliminating time delay signature of distributed feedback laser chaos
Da-Ming Wang(王大铭), Yi-Hang Lei(雷一航), Peng-Fei Shi(史鹏飞), and Zhuang-Ai Li(李壮爱). Chin. Phys. B, 2023, 32(9): 090505.
[11] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[12] Unstable periodic orbits analysis in the Qi system
Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红). Chin. Phys. B, 2023, 32(4): 040502.
[13] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[14] Dynamic modelling and chaos control for a thin plate oscillator using Bubnov-Galerkin integral method
Xiaodong Jiao(焦晓东), Xinyu Wang(王新宇), Jin Tao(陶金), Hao Sun(孙昊) Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(11): 110504.
[15] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
No Suggested Reading articles found!