|
|
Experimental test of an extension of the Rosenzweig-Porter model to mixed integrable-chaotic systems experiencing time-reversal invariance violation |
Xiaodong Zhang(张晓东)1,2, Jiongning Che(车炯宁)3,1, and Barbara Dietz2,4,1,† |
1 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea; 3 Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou 313001, China; 4 Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea |
|
|
Abstract We report on the theoretical and experimental investigations of the transition of a typical quantum system with mixed regular-integrable classical dynamics to one with violated time-reversal (${\mathcal T}$) invariance. The measurements are performed with a flat superconducting microwave resonator with circular shape in which chaoticity is induced by using either long antennas or inserting two circular disks into the cavity, and by magnetizing a ferrite disk placed at its center, which leads to violation of ${\mathcal T}$ invariance. We propose an extension of the Rosenzweig-Porter (RP) model, which interpolates between mixed regular-chaotic instead of integrable dynamics and fully chaotic dynamics with violated ${\mathcal T}$-invariance, and derive a Wigner-surmise like analytical expression for the corresponding nearest-neighbor spacing distribution. We propose a procedure involving this result and those for the RP model to determine the size of ${\mathcal T}$-invariance violation and chaoticity and validate it employing the experimental eigenfrequency spectra.
|
Received: 14 September 2024
Revised: 14 October 2024
Accepted manuscript online: 23 October 2024
|
PACS:
|
05.45.Mt
|
(Quantum chaos; semiclassical methods)
|
|
03.65.Sq
|
(Semiclassical theories and applications)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775100, 12247101, and 11961131009), Xiaodong Zhang acknowledges the financial support from the China Scholarship Council (Grant No. CSC-202306180087), and Barbara Dietz and Xiaodong Zhang acknowledge the financial support from the Institute for Basic Science in Korea (Grant No. IBS-R024-D1). |
Corresponding Authors:
Barbara Dietz
E-mail: bdietzp@gmail.com
|
Cite this article:
Xiaodong Zhang(张晓东), Jiongning Che(车炯宁), and Barbara Dietz Experimental test of an extension of the Rosenzweig-Porter model to mixed integrable-chaotic systems experiencing time-reversal invariance violation 2024 Chin. Phys. B 33 120501
|
[1] Giannoni M, Voros A and Zinn-Justin J (eds) 1989 Chaos and Quantum Physics (Amsterdam: Elsevier) [2] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Phys. Rep. 299 189 [3] Haake F, Gnutzmann S and Kuś M 2018 Quantum Signatures of Chaos (Heidelberg: Springer-Verlag) [4] Berry M V and Tabor M 1977 J. Phys. A 10 371 [5] Berry M 1979 Structural Stability in Physics (Berlin: Pergamon Press) [6] Casati G, Valz-Gris F and Guarnieri I 1980 Lett. Nuovo Cimento 28 279 [7] Bohigas O, Giannoni M J and Schmit C 1984 Phys. Rev. Lett. 52 1 [8] Mehta M L 1990 Random Matrices (London: Academic Press) [9] Porter C E 1965 Statistical Theories of Spectra: Fluctuations (New York: Academic) [10] Brody T A, Flores J, French J B, Mello P A, Pandey A and Wong S S M 1981 Rev. Mod. Phys. 53 385 [11] Zimmermann T, Köppel H, Cederbaum L S, Persch G and Demtröder W 1988 Phys. Rev. Lett. 61 3 [12] Guhr T and Weidenmüller H A 1989 Ann. Phys. 193 472 [13] Mehta M L 2004 Random Matrices (Amsterdam: Elsevier) [14] Weidenmüller H and Mitchell G 2009 Rev. Mod. Phys. 81 539 [15] Gómez J, Kar K, Kota V, Molina R, Relaño A and Retamosa J 2011 Phys. Rep. 499 103 [16] Frisch A, Mark M, Aikawa K, Ferlaino F, Bohn J L, Makrides C, Petrov A and Kotochigova S 2014 Nature 507 474 [17] Mur-Petit J and Molina R A 2015 Phys. Rev. E 92 042906 [18] Dietz B, Heusler A, Maier K H, Richter A and Brown B A 2017 Phys. Rev. Lett. 118 012501 [19] Naubereit P, Studer D, Viatkina A V, Buchleitner A, Dietz B, Flambaum V V and Wendt K 2018 Phys. Rev. A 98 022506 [20] Wigner E P 1951 Proc. Cambridge Phil Soc. 47 790 [21] Wigner E P 1955 Ann. Math. 62 548 [22] Wigner E P 1957 Ann. Math. 65 203 [23] Dietz B, Brown B A, Gayer U, Pietralla N, Ponomarev V Y, Richter A, Ries P C and Werner V 2018 Phys. Rev. C 98 054314 [24] Sinai Y G 1970 Russ. Math. Surv. 25 137 [25] Lazutkin V F 1973 Math. USSR Izv. 37 186 [26] Bunimovich L A 1979 Commun. Math. Phys. 65 295 [27] Berry M V 1981 Eur. J. Phys. 2 91 [28] Wojtowski M 1986 Comm. Math. Phys. 105 391 [29] Stöckmann H J and Stein J 1990 Phys. Rev. Lett. 64 2215 [30] Sridhar S 1991 Phys. Rev. Lett. 67 785 [31] Gräf H D, Harney H L, Lengeler H, Lewenkopf C H, Rangacharyulu C, Richter A, Schardt P and Weidenmüller H A 1992 Phys. Rev. Lett. 69 1296 [32] Stein J and Stöckmann H J 1992 Phys. Rev. Lett. 68 2867 [33] So P, Anlage S M, Ott E and Oerter R 1995 Phys. Rev. Lett. 74 2662 [34] Deus S, Koch P M and Sirko L 1995 Phys. Rev. E 52 11465 [35] Dietz B and Richter A 2015 Chaos 25 097601 [36] Hul O, Bauch S, Pakoński P, Savytskyy N, Życzkowski K and Sirko L 2004 Phys. Rev. E 69 056205 [37] awniczak M, Bauch S, Hul O and Sirko L 2010 Phys. Rev. E 81 046204 [38] Hul O, Ławniczak M, Bauch S, Sawicki A, Kuś M and Sirko L 2012 Phys. Rev. Lett. 109 040402 [39] Allgaier M, Gehler S, Barkhofen S, Stöckmann H J and Kuhl U 2014 Phys. Rev. E 89 022925 [40] Białous M, Yunko V, Bauch S, Ławniczak M, Dietz B and Sirko L 2016 Phys. Rev. Lett. 117 144101 [41] Rehemanjiang A, Allgaier M, Joyner C H, Müller S, Sieber M, Kuhl U and Stöckmann H J 2016 Phys. Rev. Lett. 117 064101 [42] Rehemanjiang A, Richter M, Kuhl U and Stöckmann H J 2018 Phys. Rev. E 97 022204 [43] Martínez-Argöello A M, Rehemanjiang A, Martínez-Mares M, Méndez-Berm′udez J A, Stöckmann H J and Kuhl U 2018 Phys. Rev. B 98 075311 [44] Rehemanjiang A, Richter M, Kuhl U and Stöckmann H J 2020 Phys. Rev. Lett. 124 116801 [45] Lu J, Che J, Zhang X and Dietz B 2020 Phys. Rev. E 102 022309 [46] Che J, Lu J, Zhang X, Dietz B and Chai G 2021 Phys. Rev. E 103 042212 [47] Rosenzweig N and Porter C 1960 Phys. Rev. 120 1698 [48] Brody T A 1973 Lett. Nuovo Cimento 7 482 [49] Berry M V and Robnik M 1984 J. Phys. A 17 2413 [50] Lenz G and Haake F 1991 Phys. Rev. Lett. 67 1 [51] Kota V K B 2014 Embedded Random Matrix Ensembles in Quantum Physics (Heidelberg: Springer-Verlag) [52] Dumitriu I and Edelman A 2002 J. Math. Phys. 43 5830 [53] Dumitriu I and Edelman A 2006 J. Math. Phys. 47 063302 [54] Zhang X, Zhang W, Che J and Dietz B 2023 Phys. Rev. E 108 044211 [55] Stöckmann H J 2000 Quantum Chaos: An Introduction (Cambridge: Cambridge University Press) [56] Richter A 1999 Playing billiards with microwaves — quantum manifestations of classical chaos Emerging Applications of Number Theory, The IMA Volumes in Mathematics and its Applications Vol. 109 ed. Hejhal D A, Friedman J, Gutzwiller M C and Odlyzko A M (New York: Springer) p. 479 [57] Dietz B and Richter A 2019 Phys. Scr. 94 014002 [58] Bohigas O, Giannoni M J, de Almeidaz A M O and Schmit C 1995 Nonlinearity 8 203 [59] Pandey A and Shukla P 1991 J. Phys. A 24 3907 [60] Lenz G 1992 Zufallsmatrixtheorie und Nichtgleichgewichtsprozesse der Niveaudynamik, Ph.D. thesis (Fachbereich Physik der Universität- Gesamthochschule Essen) [61] Pluhař Z, Weidenmüller H A, Zuk J, Lewenkopf C and Wegner F 1995 Ann. Phys. 243 1 [62] Guhr T 1996 Ann. Phys. 250 145 [63] French J B, Kota V K B, Pandey A and Tomsovic S 1985 Phys. Rev. Lett. 54 2313 [64] Mitchell G E, Richter A and Weidenmüller H A 2010 Rev. Mod. Phys. 82 2845 [65] Aßmann M, Thewes J, Fröhlich D and Bayer M 2016 Nat. Mater. 15 741 [66] Stoffregen U, Stein J, Stöckmann H J, Kuś M and Haake F 1995 Phys. Rev. Lett. 74 2666 [67] Wu D H, Bridgewater J S A, Gokirmak A and Anlage S M 1998 Phys. Rev. Lett. 81 2890 [68] Dietz B, Friedrich T, Metz J, Miski-Oglu M, Richter A, Schäfer F and Stafford C A 2007 Phys. Rev. E 75 027201 [69] Dietz B, Friedrich T, Harney H L, Miski-Oglu M, Richter A, Schäfer F, Verbaarschot J and Weidenmüller H A 2009 Phys. Rev. Lett. 103 064101 [70] Dietz B, Friedrich T, Harney H L, Miski-Oglu M, Richter A, Schäfer F and Weidenmüller H A 2010 Phys. Rev. E 81 036205 [71] Meissner W and Ochsenfeld R 1933 Die Naturwissenschaften 21 787 [72] Onnes H K 1911 Further Experiments with Liquid Helium. G. On the Electrical Resistance of Pure Metals, etc. VI. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears (Comm. from the Phys. Lab., Leiden, 1911) [73] Dietz B, Klaus T, Miski-Oglu M, Richter A and Wunderle M 2019 Phys. Rev. Lett. 123 174101 [74] Shubnikov L V, Ehotkevich V I, Shepelev Y D and Riabinin Y N 1937 Zh. Eksper. Teor. Fiz. 7 221 [75] French J, Kota V, Pandey A and Tomsovic S 1988 Ann. Phys. 181 235 [76] Leyvraz F and Seligman T H 1990 J. Phys. A: Math. Gen. 23 1555 [77] Pandey A 1995 Chaos, Solitons and Fractals 5 1275 [78] Brézin E and Hikami S 1996 Nucl. Phys. B 479 697 [79] Guhr T 1996 Phys. Rev. Lett. 76 2258 [80] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142 [81] Kunz H and Shapiro B 1998 Phys. Rev. E 58 400 [82] Frahm K M, Guhr T and Müller-Groeling A 1998 Ann. Phys. 270 292 [83] Kravtsov V E, Khaymovich I M, Cuevas E and Amini M 2015 New J. Phys. 17 122002 [84] Facoetti D, Vivo P and Biroli G 2016 Europhys. Lett. 115 47003 [85] Truong K and Ossipov A 2016 Europhys. Lett. 116 37002 [86] Monthus C 2017 J. Phys. A: Math. Theor. 50 295101 [87] von Soosten P and Warzel S 2019 Lett. Math. Phys. 109 905 [88] Pino M, Tabanera J and Serna P 2019 J. Phys. A: Math. Theor. 52 475101 [89] Tomasi G D, Amini M, Bera S, Khaymovich I M and Kravtsov V E 2019 SciPost Phys. 6 014 [90] Bogomolny E and Sieber M 2018 Phys. Rev. E 98 032139 [91] Berkovits R 2020 Phys. Rev. B 102 165140 [92] Khaymovich I M, Kravtsov V E, Altshuler B L and Ioffe L B 2020 Phys. Rev. Res. 2 043346 [93] Skvortsov M A, Amini M and Kravtsov V E 2022 Phys. Rev. B 106 054208 [94] Čadež T, Dietz B, Rosa D, Andreanov A, Slevin K and Ohtsuki T 2023 Phys. Rev. B 108 184202 [95] Čadež T, Nandy D K, Rosa D, Andreanov A and Dietz B 2024 New J. Phys. 26 083018 [96] Abrikosov A A 1957 Sov. Phys. JETP 5 1174 [97] Zhang W, Zhang X, Che J and Dietz B 2024 Eur. Phys. J. Spec. Top. 233 1275 [98] Dietz B 2022 J. Phys. A: Math. Theor. 55 474003 [99] Legrand O, Mortessagne F and Weaver R L 1997 Phys. Rev. E 55 7741 [100] Tudorovskiy T, Kuhl U and Stöckmann H J 2011 J. Phys. A 44 135101 [101] Białous M, Yunko V, Bauch S, Ławniczak M, Dietz B and Sirko L 2016 Phys. Rev. E 94 042211 [102] Šeba P 1990 Phys. Rev. Lett. 64 1855 [103] Haake F, Lenz G, Šeba P, Stein J, Stöckmann H J and Życzkowski K 1991 Phys [104] Šeba P and Życzkowski K 1991 Phys. Rev. A 44 3457 [105] Shigehara T, Yoshinaga N, Cheon T and Mizusaki T 1993 Phys. Rev. E 47 R3822 [106] Weaver R L and Sornette D 1995 Phys. Rev. E 52 3341 [107] Rahav S and Fishman S 2002 Nonlinearity 15 1541 [108] Zhang R, Zhang W, Dietz B, Chai G and Huang L 2019 Chin. Phys. B 28 100502 [109] Marks R 1991 IEEE Trans. Microwave Theory Tech. 39 1205 [110] Rytting D K 2001 Proc. ARFTG/NIST Short Course RF Measurements Wireless World pp. 1-66 [111] Yeh J H and Anlage S M 2013 Rev. Sc. Inst. 84 034706 [112] Dietz B, Klaus T, Masi M, Miski-Oglu M, Richter A, Skipa T and Wunderle M 2024 Phys. Rev. E 109 034201 [113] Pandey A 1981 Ann. Phys. 134 110 [114] Guhr T 1996 Ann. Phys. 250 145 [115] Kota V K B and Sumedha S 1999 Phys. Rev. E 60 3405 [116] Schierenberg S, Bruckmann F and Wettig T 2012 Phys. Rev. E 85 061130 [117] Dietz B, Friedrich T, Harney H L, Miski-Oglu M, Richter A, Schäfer F and Weidenmüller H A 2007 Phys. Rev. Lett. 98 074103 [118] Bohigas O and Giannoni M J 1974 Ann. Phys. 89 393 [119] Oganesyan V and Huse D A 2007 Phys. Rev. B 75 155111 [120] Atas Y Y, Bogomolny E, Giraud O and Roux G 2013 Phys. Rev. Lett. 110 084101 [121] Atas Y, Bogomolny E, Giraud O, Vivo P and Vivo E 2013 J. Phys. A 46 355204 [122] Bogomolny E and Giraud O 2002 Nonlinearity 15 993 [123] Laurent D, Legrand O and Mortessagne F 2006 Phys. Rev. E 74 046219 [124] Harish-Chandra M 1958 Am. J. Math. 80 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|