Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067304    DOI: 10.1088/1674-1056/abdda4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Floquet topological phase transition in two-dimensional quadratic band crossing system

Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏)
School of Physics and Electronic Engineering, Heze University, Heze 274015, China
Abstract  We investigate the Hall effects of quadratic band crossing (QBC) fermions in a square optical lattice with spin-orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems, which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing (spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin-orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.
Keywords:  shaking      quadratic band crossing      orbital  
Received:  02 November 2020      Revised:  11 January 2021      Accepted manuscript online:  20 January 2021
PACS:  73.43.Nq (Quantum phase transitions)  
  37.10.Jk (Atoms in optical lattices)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504095).
Corresponding Authors:  Hui-Min Yang     E-mail:  yangyhm@163.com

Cite this article: 

Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏) Floquet topological phase transition in two-dimensional quadratic band crossing system 2021 Chin. Phys. B 30 067304

[1] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 83 1539
[7] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[8] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
[9] Kennedy C J, Siviloglou G A, Miyake H, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 225301
[10] Stuhl B K, Lu H I, Aycock L M, Genkina D and Spielman I B 2015 Science 349 1514
[11] Fujita H, Nakagawa Y O, Ashida Y and Furukawa S 2016 Phys. Rev. A 94 043641
[12] Ghosh S K, Greschner S, Yadav U K, Mishra T, Rizzi M and Shenoy V B 2017 Phys. Rev. A 95 063612
[13] Li L, Hao N, Liu G, Bai Z, Li Z D, Chen S and Liu W M 2015 Phys. Rev. A 92 063618
[14] Phuc N T and Ueda M 2018 Phys. Rev. A 97 061608
[15] Görg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R and Esslinger T 2018 Nature 553 481
[16] Plekhanov K, Roux G and Le Hur K 2017 Phys. Rev. B 95 045102
[17] Zheng W and Zhai H 2014 Phys. Rev. A 89 061603
[18] Verdeny A and Mintert F 2015 Phys. Rev. A 92 063615
[19] Mei F, You J B, Zhang D W, Yang X C, Fazio R, Zhu S L and Kwek L C 2014 Phys. Rev. A 90 063638
[20] Račiūnas M, Žlabys G, Eckardt A and Anisimovas E 2016 Phys. Rev. A 93 043618
[21] Keleş A, Zhao E and Liu W V 2017 Phys. Rev. A 95 063619
[22] Cheng S, Yin H, Lu Z, He C, Wang P and Gao X 2020 Phys. Rev. A 101 043620
[23] Sun K, Yao H, Fradkin E and Kivelson S 2009 Phys. Rev. Lett. 103 046811
[24] Moon E G 2012 Phys. Rev. B 85 245123
[25] Chern G W and Batista C D 2012 Phys. Rev. Lett. 109 156801
[26] Murray J M and Vafek O 2014 Phys. Rev. B 89 201110
[27] Pawlak K A, Murray J M and Vafek O 2015 Phys. Rev. B 91 134509
[28] Dóra B and Herbut I F 2016 Phys. Rev. B 94 155134
[29] Sun K, Liu W V, Hemmerich A and Das Sarma S 2012 Nat. Phys. 8 67
[30] Zhang G F, Li Y and Wu C 2014 Phys. Rev. B 90 075114
[31] Huang H and Liu F 2018 Phys. Rev. Lett. 121 126401
[32] Amin V P, Li J, Stiles M D and Haney P M 2019 Phys. Rev. B 99 220405
[33] Galitski V and Spielman I B 2013 Nature 4 49
[34] Zhai H 2015 Rep. Prog. Phys. 78 026001
[35] Zhang Y, Mossman M E, Busch T, Engels P and Zhang C 2016 Front. Phys. 11 118103
[36] Wang Y Q and Zhang C 2017 arXiv:2017.02070 [cond-mat]
[37] Gemelke N 2007 Quantum Degenerate Atomic Gases in Controlled Optical Lattice Potentials (Ph. D. Dissertation) (Stanford University)
[38] Wu C 2008 Phys. Rev. Lett. 101 0186807
[39] Zhang M, Hung H H, Zhang C and Wu C 2011 Phys. Rev. A 83 023615
[40] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
[41] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027
[42] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[43] Alba E, Fernandez-Gonzalvo X, Mur-Petit J, Pachos J K and GarciaRipoll J J 2011 Phys. Rev. Lett. 107 235301
[44] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J, Nascimbène S, Cooper N, Bloch I and Goldman N 2014 Nat. Phys. 11 162
[45] Abanin D A, Kitagawa T, Bloch I and Demler E 2013 Phys. Rev. Lett. 110 165304
[46] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
[47] Duca L, Li T, Reitter M, Bloch I, Schleier-Smith M and Schneider U 2015 Science 347 288
[48] Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, and Fallani L 2015 Science 349 1510
[49] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[3] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[4] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[7] Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker. Chin. Phys. B, 2022, 31(12): 123401.
[8] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[9] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[10] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[11] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[12] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[13] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
[14] Tuning charge and orbital ordering in DyNiO3 by biaxial strain
Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢). Chin. Phys. B, 2021, 30(11): 117106.
[15] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
No Suggested Reading articles found!