CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Floquet topological phase transition in two-dimensional quadratic band crossing system |
Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏)† |
School of Physics and Electronic Engineering, Heze University, Heze 274015, China |
|
|
Abstract We investigate the Hall effects of quadratic band crossing (QBC) fermions in a square optical lattice with spin-orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems, which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing (spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin-orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.
|
Received: 02 November 2020
Revised: 11 January 2021
Accepted manuscript online: 20 January 2021
|
PACS:
|
73.43.Nq
|
(Quantum phase transitions)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504095). |
Corresponding Authors:
Hui-Min Yang
E-mail: yangyhm@163.com
|
Cite this article:
Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏) Floquet topological phase transition in two-dimensional quadratic band crossing system 2021 Chin. Phys. B 30 067304
|
[1] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501 [2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [4] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [6] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 83 1539 [7] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 [8] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301 [9] Kennedy C J, Siviloglou G A, Miyake H, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 225301 [10] Stuhl B K, Lu H I, Aycock L M, Genkina D and Spielman I B 2015 Science 349 1514 [11] Fujita H, Nakagawa Y O, Ashida Y and Furukawa S 2016 Phys. Rev. A 94 043641 [12] Ghosh S K, Greschner S, Yadav U K, Mishra T, Rizzi M and Shenoy V B 2017 Phys. Rev. A 95 063612 [13] Li L, Hao N, Liu G, Bai Z, Li Z D, Chen S and Liu W M 2015 Phys. Rev. A 92 063618 [14] Phuc N T and Ueda M 2018 Phys. Rev. A 97 061608 [15] Görg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R and Esslinger T 2018 Nature 553 481 [16] Plekhanov K, Roux G and Le Hur K 2017 Phys. Rev. B 95 045102 [17] Zheng W and Zhai H 2014 Phys. Rev. A 89 061603 [18] Verdeny A and Mintert F 2015 Phys. Rev. A 92 063615 [19] Mei F, You J B, Zhang D W, Yang X C, Fazio R, Zhu S L and Kwek L C 2014 Phys. Rev. A 90 063638 [20] Račiūnas M, Žlabys G, Eckardt A and Anisimovas E 2016 Phys. Rev. A 93 043618 [21] Keleş A, Zhao E and Liu W V 2017 Phys. Rev. A 95 063619 [22] Cheng S, Yin H, Lu Z, He C, Wang P and Gao X 2020 Phys. Rev. A 101 043620 [23] Sun K, Yao H, Fradkin E and Kivelson S 2009 Phys. Rev. Lett. 103 046811 [24] Moon E G 2012 Phys. Rev. B 85 245123 [25] Chern G W and Batista C D 2012 Phys. Rev. Lett. 109 156801 [26] Murray J M and Vafek O 2014 Phys. Rev. B 89 201110 [27] Pawlak K A, Murray J M and Vafek O 2015 Phys. Rev. B 91 134509 [28] Dóra B and Herbut I F 2016 Phys. Rev. B 94 155134 [29] Sun K, Liu W V, Hemmerich A and Das Sarma S 2012 Nat. Phys. 8 67 [30] Zhang G F, Li Y and Wu C 2014 Phys. Rev. B 90 075114 [31] Huang H and Liu F 2018 Phys. Rev. Lett. 121 126401 [32] Amin V P, Li J, Stiles M D and Haney P M 2019 Phys. Rev. B 99 220405 [33] Galitski V and Spielman I B 2013 Nature 4 49 [34] Zhai H 2015 Rep. Prog. Phys. 78 026001 [35] Zhang Y, Mossman M E, Busch T, Engels P and Zhang C 2016 Front. Phys. 11 118103 [36] Wang Y Q and Zhang C 2017 arXiv:2017.02070 [cond-mat] [37] Gemelke N 2007 Quantum Degenerate Atomic Gases in Controlled Optical Lattice Potentials (Ph. D. Dissertation) (Stanford University) [38] Wu C 2008 Phys. Rev. Lett. 101 0186807 [39] Zhang M, Hung H H, Zhang C and Wu C 2011 Phys. Rev. A 83 023615 [40] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237 [41] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027 [42] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424 [43] Alba E, Fernandez-Gonzalvo X, Mur-Petit J, Pachos J K and GarciaRipoll J J 2011 Phys. Rev. Lett. 107 235301 [44] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J, Nascimbène S, Cooper N, Bloch I and Goldman N 2014 Nat. Phys. 11 162 [45] Abanin D A, Kitagawa T, Bloch I and Demler E 2013 Phys. Rev. Lett. 110 165304 [46] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 [47] Duca L, Li T, Reitter M, Bloch I, Schleier-Smith M and Schneider U 2015 Science 347 288 [48] Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, and Fallani L 2015 Science 349 1510 [49] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|