|
|
Theoretical investigation on forbidden transition properties of fine-structure splitting in 2D state for K-like ions with 26 ≤ Z ≤ 36 |
Jian-Peng Liu(刘建鹏)1, Cheng-Bin Li(李承斌)2, Hong-Xin Zou(邹宏新)1 |
1. Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China; 2. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract Excitation energies, magnetic dipole, and electric quadrupole transition probabilities of the 3d 2D3/2-3d 2D5/2 transition in the potassium-like (K-like) sequence with 26 ≤ Z ≤ 36 are investigated by using the multi-configuration Dirac-Hartree-Fock (MCDHF) method. The contributions of the electron correlations, Breit interaction, and the leading-order quantum electrodynamic (QED) effects on the transition properties are analyzed. The present results are interested in the laboratory tokamak and the astronomical observations. Furthermore, the feasibility of these ions for the highly charged ion (HCI) clocks is discussed. Considering the wavelength of lasers and manipulation process of the atomic clocks, Cu10+ and Zn11+ are recommended as promising candidates with achievable quality factors at the 1015 level.
|
Received: 24 March 2017
Revised: 20 June 2017
Accepted manuscript online:
|
PACS:
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91436103, 91536102, and 91336211), the Research Programme of National University of Defense Technology, China (Grant No. JC15-0203), and the Strategic Priority Research Programme of the Chinese Academy of Sciences (Grant No. XDB21030300). |
Corresponding Authors:
Cheng-Bin Li, Hong-Xin Zou
E-mail: cbli@wipm.ac.cn;hxzou@nudt.edu.cn
|
Cite this article:
Jian-Peng Liu(刘建鹏), Cheng-Bin Li(李承斌), Hong-Xin Zou(邹宏新) Theoretical investigation on forbidden transition properties of fine-structure splitting in 2D state for K-like ions with 26 ≤ Z ≤ 36 2017 Chin. Phys. B 26 103201
|
[1] |
Suckewer S and Hinnov E 1978 Phys. Rev. Lett. 41 756
|
[2] |
Suckewer S and Hinnov E 1979 Phys. Rev. A 20 578
|
[3] |
Lodders K 2003 Astrophys. J. 591 1220
|
[4] |
François P, Matteucci F, Cayrel R, Spite M and Chiappini C 2004 Astron. & Astronphys. 421 613
|
[5] |
Ovsiannikov V D, Derevianko A and Gibble A 2011 Phys. Rev. Lett. 107 093003
|
[6] |
Safronova M S, Dzuba V A, Flambaum V V, Safronova U I, Porsev S G and Kozlov M G 2014 Phys. Rev. Lett. 113 030801
|
[7] |
Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801
|
[8] |
Berengut J C, Dzuba V A and Flambaum V V 2010 Phys. Rev. Lett. 105 120801
|
[9] |
Yudin V I, Taichenachev A V and Derevianko A 2014 Phys. Rev. Lett. 113 233003
|
[10] |
Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O and López-Urrutia J R C 2015 Science 347 1233
|
[11] |
Yu Y M and Sahoo B K 2016 Phys. Rev. A 94 062502
|
[12] |
Rynkun P, Jönsson P, Gaigalas G and Fischer C F 2013 Astron. & Astronphys. 557 A136
|
[13] |
Jönsson P, Radžiūtė L, Gaigalas G, Godefroid M R, Marques J P, Brage T, Fischer C F and Grant I P 2016 Astron. & Astronphys. 585 A26
|
[14] |
Rynkun P, Jönsson P, Gaigalas G and Fischer C F 2014 At. Data Nucl. Data Tables 100 315
|
[15] |
Jönsson P, Alkauskas A and Gaigalas G 2013 At. Data Nucl. Data Tables 99 431
|
[16] |
Wang K, Chen Z B, Si R, Jönsson P, Ekman J, Guo X L, Li S, Long F Y, Dang W, Zhao X H, Hutton R, Chen C Y, Yan J and Yang X 2016 Astro. J. Supp. 226 14
|
[17] |
Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid M R and Fischer C F 2014 Astron. & Astronphys. 564 A24
|
[18] |
Rynkun P, Jönsson P, Gaigalas G and Fischer C F 2012 At. Data Nucl. Data Tables 98 481
|
[19] |
Biémont E and Hansen J E 1989 Phys. Scr. 39 308
|
[20] |
Ali M A and Kim Y K 1988 Phys. Rev. A 38 3992
|
[21] |
Charro E, Curiel Z and Martín I 2002 Astron. & Astronphys. 387 1146
|
[22] |
Träbert E, Beiersdorfer P, Brown G V, Chen H, Thorn D B and Biémont E 2001 Phys. Rev. A 64 042511
|
[23] |
Guise N D, Tan J N, Brewer S M, Fischer C F and Jönsson P, 2014 Phys. Rev. A 89 040502
|
[24] |
Nandy D K and Sahoo B K 2016 Phys. Rev. A 94 032504
|
[25] |
Dzuba V A, Derevianko A and Flambaum V V 2012 Phys. Rev. A 86 054501
|
[26] |
Safronova M S, Dzuba V A, Flambaum V V, Safronova U I, Porsev S G and Kozlov M G 2014 Phys. Rev. A 90 042513
|
[27] |
Safronova M S, Dzuba V A, Flambaum V V, Safronova U I, Porsev S G and Kozlov M G 2014 Phys. Rev. A 90 052509
|
[28] |
Dzuba V A, Flambaum V V and Katori H 2015 Phys. Rev. A 91 022119
|
[29] |
Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425
|
[30] |
Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
|
[31] |
Jönsson P, Gaigalas G, J. Bieroń, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197
|
[32] |
Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules:Theory and Computation (Springer)
|
[33] |
Grant I P, 1974 J. Phys. B:At. Mol. Opt. Phys. 7 1458
|
[34] |
Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å and Fischer C F 1995 Phys. Rev. E 52 4499
|
[35] |
Fischer C F, Brage T and Jönsson P 1997 Computational Atomic Structure:An MCHF Approach (Institute of Physics Publishing, Bristol and Philadelphia)
|
[36] |
Zhou F, Qu Y, Li J and Wang J 2015 Phys. Rev. A 92 052505
|
[37] |
Ali M A and Kim Y K 1992 J. Opt. Soc. Am. B 9 185
|
[38] |
Kaufman V, Sugar J and Rowan W 1989 J. Opt. Soc. Am. B 6 142
|
[39] |
Kramida A, Ralchenko Yu., Reader J and NIST ADS TEAM (2016) NIST Atomic Spectra Database (version 5.4) http://physics.nist.gov/asd
|
[40] |
López-Urrutia J R C, Beiersdorfer P, Widmann K and Decaux V 1999 Phys. Scr. T80 448
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|