Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 083102    DOI: 10.1088/1674-1056/27/8/083102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions

Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新)
College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
Abstract  

Based on relativistic wave functions from multiconfiguration Dirac-Hartree-Fock and configuration interaction calculations, E2 and M1 transition probabilities of 2p3 4S3/2-2p3 2D3/2,5/2 are investigated in the nitrogen-like sequence with 7 ≤ Z ≤ 16. The contributions of the electron correlations, Breit interaction, and the quantum electrodynamic (QED) effects on the transition properties are analyzed. The present results can be used for diagnosing plasma. In addition, several N-like ions can also be recommended as a promising candidate for a highly charged ion (HCI) clock with a quality factor (Q) of transition as high as 1020.

Keywords:  forbidden transition probabilities      nitrogen-like ions      MCDHF method      RCI  
Received:  10 March 2018      Revised:  09 May 2018      Accepted manuscript online: 
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.15.ve (Electron correlation calculations for atoms and ions: ground state)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604385 and 91436103).

Corresponding Authors:  Hong-Xin Zou     E-mail:  hxzou@nudt.edu.cn

Cite this article: 

Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新) Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions 2018 Chin. Phys. B 27 083102

[1] Hinkley N, Sherman J A and Phillips N B 2013 Science 341 1215
[2] Bloom B J, Nicholson T L and Williams J R 2014 Nature 506 71
[3] Campbell C J, Radnaev A G and Kuzmich A 2012 Phys. Rev. Lett. 108 120802
[4] Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801
[5] Kielpinski D, King B E and Myatt C J 2000 Phys. Rev. A 61 32310
[6] Yudin V I, Taichenachev A V and Derevianko A 2014 Phys. Rev. Lett. 113 233003
[7] Yu Y M and Sahoo B K 2016 Phys. Rev. A 94 062502
[8] Liu J P, Li C B and Zou H X 2017 Chin. Phys. B 26 103201
[9] Mohan A, Landi E and Dwivedi B N 2003 Astrophys. J. 582 1162
[10] Edlén B 1982 Phys. Scr. 26 71
[11] Edlén B 1984 Phys. Scr. 30 135
[12] Cheng K T, Kim Y K and Desclaux J P 1979 At. Data Nucl. Data Tables 24 111
[13] Clementson J, Beiersdorfer P and Browng V 2011 Can. J. Phys. 89 571
[14] Träbert E, Calamai A G and Gillaspy J D 2000 Phys. Rev. A 62 22507
[15] Träbert E, Heckmann P H and Schlagheck W, et al. 1980 Phys. Scr. 21 27
[16] Zeippen C J 1982 Mon. Not. R. Astron. Soc. 198 127
[17] Zeippen C J http://adsabs.harvard.edu/abs/1987A
[18] Becker S R, Butler K and Zeippen C J http://adsabs.harvard.edu/abs/1989A
[19] Godefroid M and Fischer C F 1984 J. Phys. B: At. Mol. Opt. Phys. 17 681
[20] Merkelis G, Martinson I and Kisielius R 1999 Phys. Scr. 59 122
[21] Vilkas M J and Ishikawa Y 2001 Adv. Quantum Chem. 39 261
[22] Fischer C F and Tachiev G I 2004 At. Data Nucl. Data Tables 87 1
[23] Tachiev G I and Fischer C F 2002 Astronomy & Astrophysics 385 716
[24] Wang X L, Chen S H, Han X Y and Li J M 2008 Chin. Phys. Lett. 25 903
[25] Rynkun P, Jönsson P and Gaigalas G 2014 At. Data Nucl. Data Tables 100 315
[26] Han X Y, Gao X, Zeng D L, et al. 2014 Phys. Rev. A 89 042514
[27] Garstang R H 1960 Mon. Not. R. Astron. Soc. 120 201
[28] Naqvi A M 1951 “Mutual magnetic interaction in p-electron configurations (with calculations of transition probabilities and astrophysical applications)”, Ph. D. thesis (Harvard University)
[29] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425
[30] Olsen J, Godefroid M R, Jönsson P, et al. 1995 Phys. Rev. E 52 4499
[31] Jönsson P, He X, Fischer C F, et al. 2007 Comput. Phys. Commun. 177 597
[32] Fischer C F, Brage T and Jönsson P 1997 Computational Atomic Structure: An MCHF Approach (Bristol and Philadelphia: Institute of Physics Publishing)
[33] Zhou F, Qu Y, Li J and Wang J 2015 Phys. Rev. A 92 052505
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[3] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[4] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[5] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[6] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[7] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[8] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[9] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[10] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[11] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[12] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[13] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[14] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[15] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
No Suggested Reading articles found!