|
|
Effect of thickness variations of lithium niobate on insulator waveguide on the frequency spectrum of spontaneous parametric down-conversion |
Guang-Tai Xue(薛广太)1, Xiao-Hui Tian(田晓慧)1, Chi Zhang(张弛)1, Zhenda Xie(谢臻达)1, Ping Xu(徐平)2, Yan-Xiao Gong(龚彦晓)1,†, and Shi-Ning Zhu(祝世宁)1 |
1 National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 2 Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computing, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric down-conversion in the periodically-poled lithium niobate on insulator (LNOI) waveguide. We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum, such as narrowing, broadening, and splitting. We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth. Our study may promote the development of on-chip photon sources in the LNOI platform, as well as opens up a way to engineer photon frequency state.
|
Received: 17 August 2021
Revised: 27 August 2021
Accepted manuscript online: 01 September 2021
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0705000), Leading-edge Technology Program of Jiangsu Natural Science Foundation, China (Grant No. BK20192001), and the National Natural Science Foundation of China (Grant Nos. 51890861, 11690031, 11974178, and 11627810). |
Corresponding Authors:
Yan-Xiao Gong
E-mail: gongyanxiao@nju.edu.cn
|
Cite this article:
Guang-Tai Xue(薛广太), Xiao-Hui Tian(田晓慧), Chi Zhang(张弛), Zhenda Xie(谢臻达), Ping Xu(徐平), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁) Effect of thickness variations of lithium niobate on insulator waveguide on the frequency spectrum of spontaneous parametric down-conversion 2021 Chin. Phys. B 30 110313
|
[1] Boes A, Corcoran B, Chang L, Bowers J and Mitchell A 2018 Laser Photon. Rev. 12 1700256 [2] Jia Y, Wang L and Chen F 2021 Appl. Phys. Rev. 8 011307 [3] Lin J, Bo F, Cheng Y and Xu J 2020 Photon. Res. 8 1910 [4] Wang J, Sciarrino F, Laing A and Thompson M G 2020 Nat. Photon. 14 273 [5] Weis R S and Gaylord T K 1985 Appl. Phys. A. 37 191 [6] Krasnokutska I, Tambasco J J, Li X and Peruzzo A 2018 Opt. Express 26 897 [7] Zhang M, Wang C, Cheng R, Shams-Ansari A and ončar M 2017 Optica 4 1536 [8] Wu R, Wang M, Xu J, Qi J, Chu W, Fang Z, Zhang J, Zhou J, Qiao L, Chai Z, Lin J and Cheng Y 2018 Nanomaterials 8 910 [9] Zhou J X, Gao R H, Lin J, Wang M, Chu W, Li W B, Yin D F, Deng L, Fang Z W, Zhang J H, Wu R B and Cheng Y 2020 Chin. Phys. Lett. 37 084201 [10] Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W and Cheng Y 2015 Sci. Rep. 5 8072 [11] Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Lončar M 2018 Nature 562 101 [12] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photon. 13 359 [13] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J and Lončar M 2019 Nature 568 373 [14] Wang C, Zhang M, Zhu R, Hu H and Lončar M 2019 Nat. Commun. 10 978 [15] Armstrong J A, Bloembergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 127 1918 [16] Xu P and Zhu S N 2012 AIP Adv. 2 041401 [17] Wang J, Zhang C H, Liu J Y, Qian X R, Li J and Wang Q 2021 Chin. Phys. B 30 070304 [18] Tanzilli S, De Riedmatten H, Tittel H, Zbinden H, Baldi P, De Micheli M, Ostrowsky D B and Gisin N 2001 Electron. Lett. 37 26 [19] Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W and Zhu S N 2014 Phys. Rev. Lett. 113 103601 [20] Montaut N, Sansoni L, Meyer-Scott E, Ricken R, Quiring V, Herrmann H and Silberhorn C 2017 Phys. Rev. Appl. 8 024021 [21] Sun C W, Wu S H, Duan J C, Zhou J W, Xia J L, Xu P, Xie Z, Gong Y X and Zhu S N 2019 Opt. Lett. 44 5598 [22] Zhang Q Y, Xu P and and Zhu S N 2018 Chin. Phys. B 27 054207 [23] Zhao J, Ma C, Rüsing M and Mookherjea S 2020 Phys. Rev. Lett. 124 163603 [24] Ma Z, Chen J Y, Li Z, Tang C, Sua Y M, Fan H and Huang Y P 2020 Phys. Rev. Lett. 125 263602 [25] Xue G T, Niu Y F, Liu X, Duan J C, Chen W, Pan Y, Jia K, Wang X, Liu H Y, Zhang Y, Xu P, Zhao G, Cai X, Gong Y X, Hu X, Xie Z and Zhu S N 2021 Phys. Rev. Appl. 15 064059 [26] Santandrea M, Stefszky M and Silberhorn C 2019 Opt. Lett. 44 5398 [27] Santandrea M, Stefszky M, Ansari V and Silberhorn C 2019 New J. Phys. 21 033038 [28] Santandrea M, Stefszky M, Roeland G and Silberhorn C 2019 New J. Phys. 21 123005 [29] Tian X H, Zhou W, Ren K Q, Zhang C, Liu X, Xue G T, Duan J C, Cai X, Hu X, Gong Y X, Xie Z and Zhu S N 2021 Chin. Opt. Lett. 19 60015 [30] Gong Y X, Xie Z D, Xu P, Yu X Q, Xue P and Zhu S N 2011 Phys. Rev. A 84 053825 [31] Helmfrid S, Arvidsson G and Webjörn J 1992 J. Opt. Soc. Am. B 10 222 [32] Santandrea M, Stefszky M and Silberhorn C 2019 Opt. Lett. 44 5398 [33] NANOLN Inc., private communication |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|