Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020201    DOI: 10.1088/1674-1056/21/2/020201
RAPID COMMUNICATION   Next  

A diagrammatic categorification of q-boson and q-fermion algebras

Cai Li-Qiang(蔡立强), Lin Bing-Sheng(林冰生), and Wu Ke(吴可)
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Abstract  In this paper, we study the diagrammatic categorification of q-boson algebra and also q-fermion algebra. We construct a graphical category corresponding to q-boson algebra. q-Fock states correspond to some kind of 1-morphisms, and the graded dimension of the graded vector space of 2-morphisms is exactly the inner product of the corresponding q-Fock states. We also find that this graphical category can be used to categorify q-fermion algebra.
Keywords:  categorification      q-boson algebra      q-Fock state      q-fermion algebra  
Received:  13 September 2011      Revised:  22 September 2011      Accepted manuscript online: 
PACS:  02.10.Hh (Rings and algebras)  
  03.65.Ca (Formalism)  
  03.65.Fd (Algebraic methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975102, 10871135, 11031005, and 11075014).
Corresponding Authors:  Lin Bing-Sheng,gdjylbs@mail.ustc.edu.cn     E-mail:  gdjylbs@mail.ustc.edu.cn

Cite this article: 

Cai Li-Qiang(蔡立强), Lin Bing-Sheng(林冰生), and Wu Ke(吴可) A diagrammatic categorification of q-boson and q-fermion algebras 2012 Chin. Phys. B 21 020201

[1] Baez J and Dolan J 1998 Contemp. Math. 230 1
[2] Khovanov M 2001 Comm. Algebra 29 5033
[3] Lauda A D 2010 Adv. Math. 225 3327
[4] Khovanov M 2010 arXiv: 1009.3295v1 [math.RT]
[5] Cautis S and Licata A 2010 arXiv/: 1009.5147v2 [math.QA]
[6] Licata A and Savage A 2011 arXiv/: 1101.0420v1 [math.RT]
[7] Wang N, Wang Z X, Wu K and Yang Z F 2011 Commun. Theor. Phys. 56 37
[8] Chang W J, Wang Z X, Wu K and Yang Z F 2011 Commun. Theor. Phys. 56 207
[9] Baez J and Dolan J 2000 arXiv/: math/0004133v1 [math.QA]
[10] Morton J 2006 Theory Appl. Categ. 16 785
[11] Vicary J 2008 Int. J. Theor. Phys. 47 3408
[12] Heunen C, Landsman N P and Spitters B 2009 Comm. Math. Phys. 291 63
[13] Abramsky S and Coecke B 2008 arXiv/: 0808.1023v1 [quant-ph]
[14] Stirling S D and Wu Y S 2009 arXiv/: 0909.0988v1 [quant-ph]
[15] Isham C J 2010 arXiv/: 1004.3564v1 [quant-ph]
[16] Chaichian M, Felipe R G and Montonen C 1993 J. Phys. A: Math. Gen. 26 4017
[17] Kwek L C and Oh C H 1998 Lett. Math. Phys. 44 273
[18] Eremin V V and Meldianov A A 2006 Theor. Math. Phys. 147 709
[19] Swamy P N 2006 Int. J. Mod. Phys. B 20 2537
[20] Lin B S and Wu K 2012 “A Categorification of the Boson Oscillator” Commun. Theor. Phys. (to appear)
[1] Cluster algebra structure on the finite dimensional representations of affine quantum group Uq(Â3)
Yang Yan-Min (杨彦敏), Ma Hai-Tao (马海涛), Lin Bing-Sheng (林冰生), Zheng Zhu-Jun (郑驻军). Chin. Phys. B, 2015, 24(1): 010201.
[2] A diagrammatic categorification of the fermion algebra
Lin Bing-Sheng (林冰生), Wang Zhi-Xi (王志玺), Wu Ke (吴可), Yang Zi-Feng (杨紫峰). Chin. Phys. B, 2013, 22(10): 100201.
No Suggested Reading articles found!