|
|
Electric-field-modified Feshbach resonances in ultracold atom-molecule collision |
Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英) |
Department of Physics, Anhui Normal University, Wuhu 241000, China |
|
|
Abstract We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule, taking the He-PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom-molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale.
|
Received: 23 July 2016
Revised: 25 October 2016
Accepted manuscript online:
|
PACS:
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
37.90.+j
|
(Other topics in mechanical control of atoms, molecules, and ions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874001 and 11374014). |
Corresponding Authors:
Eryin Feng
E-mail: fengbf@mail.ahnu.edu.cn
|
Cite this article:
Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英) Electric-field-modified Feshbach resonances in ultracold atom-molecule collision 2017 Chin. Phys. B 26 013402
|
[1] |
Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
|
[2] |
de Miranda M H G, Chotia A, Neyenhuis B, Wang D, Quéméner G, Ospelkaus S, Bohn J L, Ye J and Jin D S 2011 Nat. Phys. 7 502
|
[3] |
Büchler H P, Demler E, Lukin M, Micheli M, Prokofév N, Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404
|
[4] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[5] |
Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H C 2014 Phys. Rev. Lett. 113 205301
|
[6] |
Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
|
[7] |
Köhler T, Göral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
|
[8] |
Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
|
[9] |
Frisch A, Mark M, Aikawa K, Ferlaino F, Bohn J L, Makrides C, Petrov A and Kotochigova S 2014 Nature 507 475
|
[10] |
Baumann K, Burdick N Q, Lu M and Lev B L 2014 Phys. Rev. A 89 020701
|
[11] |
Li Z and Madison K W 2009 Phys. Rev. A 79 042711
|
[12] |
Li Z and Krems R V 2007 Phys. Rev. A 75 032709
|
[13] |
Krems R V 2006 Phys. Rev. Lett. 96 123202
|
[14] |
Tomza M, González-Férez R, Koch C P and Moszynski R 2014 Phys. Rev. Lett. 112 113201
|
[15] |
Xie T, Wang G R, Zhang W, Huang Y and Cong S L 2012 Phys. Rev. A 86 032713
|
[16] |
Stoecklin T 2009 Phys. Rev. A 80 012710
|
[17] |
Tscherbul T V 2008 J. Chem. Phys. 128 244305
|
[18] |
Abrahamsson E, Tscherbul T V and Krems R V 2007 J. Chem. Phys. 127 044302
|
[19] |
Quéméner G and Bohn J L 2013 Phys. Rev. A 88 012706
|
[20] |
Marcelis B, Verhaar B and Kokkelmans S 2008 Phys. Rev. Lett. 100 153201
|
[21] |
Feng E Y, Yu C, Sun C, Shao X and Huang W 2011 Phys. Rev. A 84 062711
|
[22] |
Feng E Y, Wang Z, Gong M and Cui Z 2007 J. Chem. Phys. 127 174301
|
[23] |
Wang Z, Gong M, Zhang Y, Feng E Y and Cui Z 2008 J. Chem. Phys. 128 044309
|
[24] |
Feng E Y, Sun C, Yu C, Shao X and Huang W 2011 J. Chem. Phys. 135 124301
|
[25] |
González-Martínez M L and Hutson J M 2007 Phys. Rev. A 75 022702
|
[26] |
Tscherbul T V and Krems R V 2006 J. Chem. Phys. 125 194311
|
[27] |
Tscherbul T V and Krems R V 2006 Phys. Rev. Lett. 97 083201
|
[28] |
Guillon G, Stoecklin T and Voronin A 2008 Phys. Rev. A 77 042718
|
[29] |
Johnson B J 1973 J. Comput. Phys. 13 445
|
[30] |
Hutzler N R, Lu H I and Doyle J M 2012 Chem. Rev. 112 4803
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|