Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 013402    DOI: 10.1088/1674-1056/26/1/013402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electric-field-modified Feshbach resonances in ultracold atom-molecule collision

Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英)
Department of Physics, Anhui Normal University, Wuhu 241000, China
Abstract  

We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule, taking the He-PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom-molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale.

Keywords:  Feshbach resonance      ultracold atom-molecule collision  
Received:  23 July 2016      Revised:  25 October 2016      Accepted manuscript online: 
PACS:  34.50.-s (Scattering of atoms and molecules)  
  37.90.+j (Other topics in mechanical control of atoms, molecules, and ions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 10874001 and 11374014).

Corresponding Authors:  Eryin Feng     E-mail:  fengbf@mail.ahnu.edu.cn

Cite this article: 

Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英) Electric-field-modified Feshbach resonances in ultracold atom-molecule collision 2017 Chin. Phys. B 26 013402

[1] Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
[2] de Miranda M H G, Chotia A, Neyenhuis B, Wang D, Quéméner G, Ospelkaus S, Bohn J L, Ye J and Jin D S 2011 Nat. Phys. 7 502
[3] Büchler H P, Demler E, Lukin M, Micheli M, Prokofév N, Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404
[4] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[5] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H C 2014 Phys. Rev. Lett. 113 205301
[6] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
[7] Köhler T, Göral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
[8] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[9] Frisch A, Mark M, Aikawa K, Ferlaino F, Bohn J L, Makrides C, Petrov A and Kotochigova S 2014 Nature 507 475
[10] Baumann K, Burdick N Q, Lu M and Lev B L 2014 Phys. Rev. A 89 020701
[11] Li Z and Madison K W 2009 Phys. Rev. A 79 042711
[12] Li Z and Krems R V 2007 Phys. Rev. A 75 032709
[13] Krems R V 2006 Phys. Rev. Lett. 96 123202
[14] Tomza M, González-Férez R, Koch C P and Moszynski R 2014 Phys. Rev. Lett. 112 113201
[15] Xie T, Wang G R, Zhang W, Huang Y and Cong S L 2012 Phys. Rev. A 86 032713
[16] Stoecklin T 2009 Phys. Rev. A 80 012710
[17] Tscherbul T V 2008 J. Chem. Phys. 128 244305
[18] Abrahamsson E, Tscherbul T V and Krems R V 2007 J. Chem. Phys. 127 044302
[19] Quéméner G and Bohn J L 2013 Phys. Rev. A 88 012706
[20] Marcelis B, Verhaar B and Kokkelmans S 2008 Phys. Rev. Lett. 100 153201
[21] Feng E Y, Yu C, Sun C, Shao X and Huang W 2011 Phys. Rev. A 84 062711
[22] Feng E Y, Wang Z, Gong M and Cui Z 2007 J. Chem. Phys. 127 174301
[23] Wang Z, Gong M, Zhang Y, Feng E Y and Cui Z 2008 J. Chem. Phys. 128 044309
[24] Feng E Y, Sun C, Yu C, Shao X and Huang W 2011 J. Chem. Phys. 135 124301
[25] González-Martínez M L and Hutson J M 2007 Phys. Rev. A 75 022702
[26] Tscherbul T V and Krems R V 2006 J. Chem. Phys. 125 194311
[27] Tscherbul T V and Krems R V 2006 Phys. Rev. Lett. 97 083201
[28] Guillon G, Stoecklin T and Voronin A 2008 Phys. Rev. A 77 042718
[29] Johnson B J 1973 J. Comput. Phys. 13 445
[30] Hutzler N R, Lu H I and Doyle J M 2012 Chem. Rev. 112 4803
[1] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[2] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[3] A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics
Rui Yao(姚睿), Zhen-Dong Sun(孙震东), Shu-Yu Zhou(周蜀渝), Ying Wang(王颖), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2018, 27(1): 016703.
[4] Two-color laser modulation of magnetic Feshbach resonances
Li Jian (李健), Liu Yong (刘勇), Huang Yin (黄寅), Cong Shu-Lin (丛书林). Chin. Phys. B, 2015, 24(8): 080308.
[5] Radio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gas
Huang Liang-Hui (黄良辉), Wang Peng-Jun (王鹏军), Fu Zheng-Kun (付正坤), Zhang Jing (张靖). Chin. Phys. B, 2014, 23(1): 013402.
[6] Feshbach resonances in an ultracold mixture of 87Rb and 40K
Wang Peng-Jun(王鹏军), Fu Zheng-Kun(付正坤), Chai Shi-Jie(柴世杰), and Zhang Jing(张靖) . Chin. Phys. B, 2011, 20(10): 103401.
[7] Controlling the amplitude of soliton in agrowing Bose--Einstein condensate by means of Feshbach resonance
He Zhang-Ming(何章明), Wang Deng-Long(王登龙), Zhang Wei-Xi(张蔚曦), Wang Feng-Jiao(王凤姣), and Ding Jian-Wen(丁建文). Chin. Phys. B, 2008, 17(10): 3640-3643.
No Suggested Reading articles found!