Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 063701    DOI: 10.1088/1674-1056/adc408
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Sub-Doppler cooling of magnesium fluoride molecules

Jin Wei(魏晋)1, Di Wu(吴迪)1, Taojing Dong(董涛晶)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
Abstract  We present a theoretical approach to achieve sub-Doppler cooling of magnesium fluoride (MgF) molecules by tuning the AC Stark shift with a blue-detuned laser. We study three blue-detuned magneto-optical trapping (MOT) schemes by using the Bayesian optimization method with the optical Bloch equations. We perform a comprehensive analysis of the relationship between the force in the MOT and the velocities and positions of the MgF molecules. Monte-Carlo simulations show that our MOT schemes can achieve a temperature as low as 28 μK and a density as high as 4.0×108 cm3 at the conditions of a ratio of two laser intensities of 2:7, a detuning of 3Γ and a polarization configuration of σσ+. These results provide a clear way for transferring a large number of MgF molecules into a conservative trap to enhance the subsequent cooling such as evaporative or sympathetic cooling.
Keywords:  cold molecule      sub-Doppler cooling      blue-detuned magneto-optical trapping      Bayesian optimization  
Received:  05 February 2025      Revised:  20 March 2025      Accepted manuscript online:  24 March 2025
PACS:  37.10.Mn (Slowing and cooling of molecules)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
  37.10.Pq (Trapping of molecules)  
  02.90.+p (Other topics in mathematical methods in physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174115 and 91836103).
Corresponding Authors:  Yong Xia     E-mail:  yxia@phy.ecnu.edu.cn

Cite this article: 

Jin Wei(魏晋), Di Wu(吴迪), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平) Sub-Doppler cooling of magnesium fluoride molecules 2025 Chin. Phys. B 34 063701

[1] Bao Y C, Yu S S, Anderegg L, Chae E, Ketterle W, Ni K K and Doyle J M 2023 Science 382 1138
[2] Holland C M, Lu Y and Cheuk L W 2023 Science 382 1143
[3] Karman T, Tomza M and Pérez-Ríos J 2024 Nat. Phys. 20 722
[4] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990
[5] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[6] Langen T, Valtolina G, Wang D and Ye J 2024 Nat. Phys. 20 702
[7] Udrescu S M, Wilkins S G, Breier A A, et al. 2024 Nat. Phys. 20 202
[8] DeMille D, Hutzler N R, Rey A M and Zelevinsky T 2024 Nat. Phys. 20 741
[9] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286
[10] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201
[11] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173
[12] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M and Ye J 2018 Phys. Rev. Lett. 121 213201
[13] Zeng Z X, Deng S H, Yang S K and Yan B 2024 Phys. Rev. Lett. 133 143404
[14] Vilas N B, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D and Doyle J M 2022 Nature 606 70
[15] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W and Doyle J M 2018 Nat. Phys. 14 890
[16] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202
[17] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E and Tarbutt M R 2018 Phys. Rev. Lett. 120 163201
[18] Anderegg L, Cheuk L W, Bao Y, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156
[19] Jarvis K N, Devlin J A, Wall T E, Sauer B E and Tarbutt M R 2018 Phys. Rev. Lett. 120 083201
[20] Jorapur V, Langin T K, Wang Q, Zheng G and DeMille D 2024 Phys. Rev. Lett. 132 163403
[21] Burau J J, Aggarwal P, Mehling K and Ye J 2023 Phys. Rev. Lett. 130 193401
[22] Li S J, Holland C M, Lu Y and Cheuk L W 2024 Phys. Rev. Lett. 132 233402
[23] Hallas C, Li G K, Vilas N B, Robichaud P, Anderegg L and Doyle J M 2024 arXiv: 2404.03636
[24] Rodriguez K J, Pilgram N H, Barker D S, Eckel S P and Norrgard E B 2023 Phys. Rev. A 108 033105
[25] Wu D, Wei J, Dong T J, Zu C Y, Xia Y and Yin J P 2025 Chin. Phys. B 34 023101
[26] Norrgard E B, Chamorro Y, Cooksey C C, Eckel S P, Pilgram N H, Rodriguez K J, Yoon H W, Pašteka L F and Borschevsky A 2023 Phys. Rev. A 108 032809
[27] Chae E 2021 Phys. Chem. Chem. Phys. 23 1215
[28] Xu S, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408
[29] Yan K, Wei B, Yin Y L, Xu S, Xu L, Xia M, Gu R X, Xia Y and Yin J P 2020 New J. Phys. 22 033003
[30] Xia M, Gu R X, Yan K, Wu D, Xu L, Xia Y and Yin J P 2021 Phys. Rev. A 103 013321
[31] Gu R X, Yan K,Wu D,Wei J, Xia Y and Yin J P 2022 Phys. Rev. A 105 042806
[32] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202
[33] Xu S P, Xia M, Yin Y N, Gu R X, Xia Y and Yin J P 2019 J. Chem. Phys. 150 084302
[34] Doppelbauer M, Wright S C, Hofsäss S, Sartakov B G, Meijer G and Truppe S 2022 J. Chem. Phys. 156 134301
[35] Weidemüller M, Esslinger T, Ol’shaniiMA, Hemmerich A and Hänsch T W 1994 Europhys. Lett. 27 109
[36] Shahriari B, Swersky K, Wang Z, et al. 2015 Proc. IEEE 104 148
[37] Xu S, Kaebert P, Stepanova M, Poll T, SierckeMand Ospelkaus S 2022 Phys. Rev. Res. 4 L042036
[38] Xu S, Li R, Xia Y, Siercke M and Ospelkaus S 2023 Phys. Rev. A 108 033102
[39] Davletov E T, Tsyganok V V, Khlebnikov V A, Pershin D A, Shaykin D V and Akimov A V 2020 Phys. Rev. A 102 011302
[40] Vendeiro Z, Ramette J, Rudelis A, Chong M, Sinclair J, Stewart L, Urvoy A and Vuletić V 2022 Phys. Rev. Res. 4 043216
[41] Devlin J A and Tarbutt M R 2018 Phys. Rev. A 98 063415
[42] Yin J P 2006 Phys. Rep. 430 1
[43] Bigagli N, Yuan W J, Zhang S W, Bulatovic B, Karman T, Stevenson I and Will S 2024 Nature 631 289
[44] Kaufman A M and Ni K K 2021 Nat. Phys. 17 1324
[1] Dual-species stimulated deceleration of MgF molecules with Rb atoms
Jin Wei(魏晋), Di Wu(吴迪), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(7): 073701.
[2] A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule
Di Wu(吴迪), Jin Wei(魏晋), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(2): 023101.
[3] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[4] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[5] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[6] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[7] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[8] Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages
Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平). Chin. Phys. B, 2019, 28(5): 053701.
[9] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[10] Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠). Chin. Phys. B, 2018, 27(5): 053701.
[11] Photoassociation spectra of ultracold 85Rb2 molecule in 0u+ long range state near the 5S1/2+5P1/2 asymptote
Guodong Zhao(赵国栋), Dianqiang Su(苏殿强), Zhonghua Ji(姬中华), Tengfei Meng(孟腾飞), Yanting Zhao(赵延霆), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(8): 083301.
[12] Production of cold CN molecules by photodissociating ICN precursors in brute-force field
Wen-Xia Xu(徐文霞), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠). Chin. Phys. B, 2017, 26(5): 053702.
[13] Highly sensitive photoassociation spectroscopy of ultracold 23Na133Cs molecular long-range states below the 3S1/2+6P3/2 limit
Yanyan Liu(刘艳艳), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Xiaofeng Wang(王晓锋), Wenhao Wang(王文浩), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123702.
[14] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[15] Two-color laser modulation of magnetic Feshbach resonances
Li Jian (李健), Liu Yong (刘勇), Huang Yin (黄寅), Cong Shu-Lin (丛书林). Chin. Phys. B, 2015, 24(8): 080308.
No Suggested Reading articles found!