Sub-Doppler cooling of magnesium fluoride molecules
Jin Wei(魏晋)1, Di Wu(吴迪)1, Taojing Dong(董涛晶)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
Abstract We present a theoretical approach to achieve sub-Doppler cooling of magnesium fluoride (MgF) molecules by tuning the AC Stark shift with a blue-detuned laser. We study three blue-detuned magneto-optical trapping (MOT) schemes by using the Bayesian optimization method with the optical Bloch equations. We perform a comprehensive analysis of the relationship between the force in the MOT and the velocities and positions of the MgF molecules. Monte-Carlo simulations show that our MOT schemes can achieve a temperature as low as 28 μK and a density as high as cm at the conditions of a ratio of two laser intensities of 2:7, a detuning of 3 and a polarization configuration of . These results provide a clear way for transferring a large number of MgF molecules into a conservative trap to enhance the subsequent cooling such as evaporative or sympathetic cooling.
Jin Wei(魏晋), Di Wu(吴迪), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平) Sub-Doppler cooling of magnesium fluoride molecules 2025 Chin. Phys. B 34 063701
[1] Bao Y C, Yu S S, Anderegg L, Chae E, Ketterle W, Ni K K and Doyle J M 2023 Science 382 1138 [2] Holland C M, Lu Y and Cheuk L W 2023 Science 382 1143 [3] Karman T, Tomza M and Pérez-Ríos J 2024 Nat. Phys. 20 722 [4] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990 [5] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049 [6] Langen T, Valtolina G, Wang D and Ye J 2024 Nat. Phys. 20 702 [7] Udrescu S M, Wilkins S G, Breier A A, et al. 2024 Nat. Phys. 20 202 [8] DeMille D, Hutzler N R, Rey A M and Zelevinsky T 2024 Nat. Phys. 20 741 [9] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286 [10] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201 [11] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173 [12] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M and Ye J 2018 Phys. Rev. Lett. 121 213201 [13] Zeng Z X, Deng S H, Yang S K and Yan B 2024 Phys. Rev. Lett. 133 143404 [14] Vilas N B, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D and Doyle J M 2022 Nature 606 70 [15] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W and Doyle J M 2018 Nat. Phys. 14 890 [16] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202 [17] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E and Tarbutt M R 2018 Phys. Rev. Lett. 120 163201 [18] Anderegg L, Cheuk L W, Bao Y, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156 [19] Jarvis K N, Devlin J A, Wall T E, Sauer B E and Tarbutt M R 2018 Phys. Rev. Lett. 120 083201 [20] Jorapur V, Langin T K, Wang Q, Zheng G and DeMille D 2024 Phys. Rev. Lett. 132 163403 [21] Burau J J, Aggarwal P, Mehling K and Ye J 2023 Phys. Rev. Lett. 130 193401 [22] Li S J, Holland C M, Lu Y and Cheuk L W 2024 Phys. Rev. Lett. 132 233402 [23] Hallas C, Li G K, Vilas N B, Robichaud P, Anderegg L and Doyle J M 2024 arXiv: 2404.03636 [24] Rodriguez K J, Pilgram N H, Barker D S, Eckel S P and Norrgard E B 2023 Phys. Rev. A 108 033105 [25] Wu D, Wei J, Dong T J, Zu C Y, Xia Y and Yin J P 2025 Chin. Phys. B 34 023101 [26] Norrgard E B, Chamorro Y, Cooksey C C, Eckel S P, Pilgram N H, Rodriguez K J, Yoon H W, Pašteka L F and Borschevsky A 2023 Phys. Rev. A 108 032809 [27] Chae E 2021 Phys. Chem. Chem. Phys. 23 1215 [28] Xu S, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408 [29] Yan K, Wei B, Yin Y L, Xu S, Xu L, Xia M, Gu R X, Xia Y and Yin J P 2020 New J. Phys. 22 033003 [30] Xia M, Gu R X, Yan K, Wu D, Xu L, Xia Y and Yin J P 2021 Phys. Rev. A 103 013321 [31] Gu R X, Yan K,Wu D,Wei J, Xia Y and Yin J P 2022 Phys. Rev. A 105 042806 [32] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202 [33] Xu S P, Xia M, Yin Y N, Gu R X, Xia Y and Yin J P 2019 J. Chem. Phys. 150 084302 [34] Doppelbauer M, Wright S C, Hofsäss S, Sartakov B G, Meijer G and Truppe S 2022 J. Chem. Phys. 156 134301 [35] Weidemüller M, Esslinger T, Ol’shaniiMA, Hemmerich A and Hänsch T W 1994 Europhys. Lett. 27 109 [36] Shahriari B, Swersky K, Wang Z, et al. 2015 Proc. IEEE 104 148 [37] Xu S, Kaebert P, Stepanova M, Poll T, SierckeMand Ospelkaus S 2022 Phys. Rev. Res. 4 L042036 [38] Xu S, Li R, Xia Y, Siercke M and Ospelkaus S 2023 Phys. Rev. A 108 033102 [39] Davletov E T, Tsyganok V V, Khlebnikov V A, Pershin D A, Shaykin D V and Akimov A V 2020 Phys. Rev. A 102 011302 [40] Vendeiro Z, Ramette J, Rudelis A, Chong M, Sinclair J, Stewart L, Urvoy A and Vuletić V 2022 Phys. Rev. Res. 4 043216 [41] Devlin J A and Tarbutt M R 2018 Phys. Rev. A 98 063415 [42] Yin J P 2006 Phys. Rep. 430 1 [43] Bigagli N, Yuan W J, Zhang S W, Bulatovic B, Karman T, Stevenson I and Will S 2024 Nature 631 289 [44] Kaufman A M and Ni K K 2021 Nat. Phys. 17 1324
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.