Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040204    DOI: 10.1088/1674-1056/adbeda
GENERAL Prev   Next  

Graph distillation with network symmetry

Feng Lin(林峰)1 and Jia-Lin He(何嘉林)1,2,3,†
1 China West Normal University, Nanchong 637000, China;
2 The Internet of Things Perception and Big Data Analysis Key Laboratory of Nanchong City, Nanchong 637000, China;
3 Institute of Artificial Intelligence, China West Normal University, Nanchong 637000, China
Abstract  Graph neural networks (GNNs) have demonstrated excellent performance in graph representation learning. However, as the volume of graph data grows, issues related to cost and efficiency become increasingly prominent. Graph distillation methods address this challenge by extracting a smaller, reduced graph, ensuring that GNNs trained on both the original and reduced graphs show similar performance. Existing methods, however, primarily optimize the feature matrix of the reduced graph and rely on correlation information from GNNs, while neglecting the original graph's structure and redundant nodes. This often results in a loss of critical information within the reduced graph. To overcome this limitation, we propose a graph distillation method guided by network symmetry. Specifically, we identify symmetric nodes with equivalent neighborhood structures and merge them into "super nodes", thereby simplifying the network structure, reducing redundant parameter optimization and enhancing training efficiency. At the same time, instead of relying on the original node features, we employ gradient descent to match optimal features that align with the original features, thus improving downstream task performance. Theoretically, our method guarantees that the reduced graph retains the key information present in the original graph. Extensive experiments demonstrate that our approach achieves significant improvements in graph distillation, exhibiting strong generalization capability and outperforming existing graph reduction methods.
Keywords:  graph neural networks      graph distillation      network symmetry      super nodes      feature optimization  
Received:  13 November 2024      Revised:  25 February 2025      Accepted manuscript online:  11 March 2025
PACS:  02.10.Ox (Combinatorics; graph theory)  
  02.40.Pc (General topology)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  11.30.-j (Symmetry and conservation laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62176217), the Program from the Sichuan Provincial Science and Technology, China (Grant No. 2018RZ0081), and the Fundamental Research Funds of China West Normal University (Grant No. 17E063).
Corresponding Authors:  Jia-Lin He     E-mail:  hejialin32@126.com

Cite this article: 

Feng Lin(林峰) and Jia-Lin He(何嘉林) Graph distillation with network symmetry 2025 Chin. Phys. B 34 040204

[1] Mitchell J C 1974 Annual Review of Anthropology 3 279
[2] Lü L, Medo M, Yeung C H, Zhang Y C, Zhang Z K and Zhou T 2012 Physics Reports 519 1
[3] Cui D X, He J L, Xiao Z F and RenWP 2023 Chin. Phys. B 32 098904
[4] Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C and Sun M 2020 AI open 1 57
[5] Lin B and Wang Y X 2024 Chin. Phys. B 33 084401
[6] Kong J G, Li Q X, Li J, Lin Y and Zhu J J 2022 Chin. Phys. Lett. 39 067503
[7] Kipf T N and Welling M 2016 arXiv:1609.02907[cs.LG]
[8] Veličković P, Cucurull G, Casanova A, Romero A, Lio P and Bengio Y 2017 arXiv:1710.10903[stat.ML]
[9] Hamilton W, Ying Z and Leskovec J 2017 arXiv:1706.02216cs.SI]
[10] Gao X, Yu J, Jiang W, Chen T, Zhang W and Yin H 2024 arxiv:2401.11720[cs.LG]
[11] Jin W, Zhao L, Zhang S, Liu Y, Tang J and Shah N 2021 arxiv:2110.07580[cs.LG]
[12] Liu M, Li S, Chen X and Song L 2022 arxiv:2206.13697[cs.LG]
[13] Zheng X, Zhang M, Chen C, Nguyen Q V H, Zhu X and Pan S 2023 arXiv:2306.02664cs.LG]
[14] Sánchez-García R J 2020 Communications Physics 3 87
[15] McKay B D and Piperno A 2014 Journal of Symbolic Computation 60 94
[16] Gilmer J, Schoenholz S S, Riley P F, Vinyals O and Dahl G E 2017 arXiv:1704.01212cs.LG]
[17] You J, Gomes-Selman J M, Ying R and Leskovec J 2021 Proceedings of the AAAI Conference on Artificial Intelligence 35 10737
[18] Xiao Y, Macarthur B D, Wang H and Xiong M 2008 Phys. Rev. E 78 046102
[19] Slansky R 1981 Physics Reports 79 1
[20] Bradley A P 1997 Pattern Recognition 30 1145
[21] Rozemberczki B, Allen C and Sarkar R 2021 Journal of Complex Networks 9 cnab014
[22] Yun S, Jeong M, Kim R, Kang J and Kim H J 2019 arXiv:1911.06455[cs.LG]
[23] Welling M 2009 ICML ’09, June 14-18, Montreal Quebec, Canada, p.1121
[24] Sener O and Savarese S 2017 arXiv:1708.00489[stat.ML]
[25] Huang Z, Zhang S, Xi C, Liu T and Zhou M 2021 KDD ’21, August 14-18, Singapore, p. 675
[26] Lim D, Hohne F, Li X, Huang S L, Gupta V, Bhalerao O and Lim S 2021 arXiv:2110.14446cs.LG]
[27] Cen Y, Hou Z,Wang Y, et al. 2023 WWW’23, April 30-May 4, Austin TX, USA, p. 747
[28] Wu F, Souza A, Zhang T, Fifty C, Yu T and Weinberger K 2019 arXiv:1902.07153cs.LG]
[29] Hassani K and Khasahmadi A H 2020 arXiv:2006.05582cs.LG]
[30] Feng W, Zhang J, Dong Y, Han Y, Luan H, Xu Q, Yang Q, Kharlamov E and Tang J 2020 NeurIPS 2020, December 6-12, Online, p. 22092
[31] Abu-El-Haija S, Perozzi B, Kapoor A, Alipourfard N, Lerman K, Harutyunyan H, Steeg G V and Galstyan A 2019 arXiv:1905.00067cs.LG]
[32] Tang S, Li B and Yu H 2024 Communications in Mathematics and Statistics 2024 1
[33] He M, Wei Z and Xu H 2021 NeurIPS 2021, December 6-14, Online, p. 14239
[34] Xu B, Shen H, Cao Q, Qiu Y and Cheng X 2019 arXiv:1904.07785[cs.LG]
[35] Danel T, Spurek P, Tabor J, Smieja M, Struski L, Slowik A and Maziarka L 2020 ICONIP 2020, November 23-27, Bangkok, Thailand, p. 668
[36] Wang T, Zhu J Y, Torralba A and Efros A A 2018 arXiv:1811.10959[cs.LG]
[37] Zhao B, Mopuri K R and Bilen H 2020 arXiv:2006.05929[cs.CV]
[38] Loukas A 2019 arXiv:1808.10650cs.DS]
[39] Loukas A and Vandergheynst P 2018 arXiv:1802.07510cs.LG]
[1] Programming guide for solving constraint satisfaction problems with tensor networks
Xuanzhao Gao(高煊钊), Xiaofeng Li(李晓锋), and Jinguo Liu(刘金国). Chin. Phys. B, 2025, 34(5): 050201.
[2] Self-similarity of multilayer networks
Bing Wang(王冰), Huizhi Yu(于蕙芷), and Daijun Wei(魏代俊). Chin. Phys. B, 2025, 34(1): 010202.
[3] Topological states constructed by two different trivial quantum wires
Jing-Run Lin(林景润), Linxi Lv(吕林喜), and Zheng-Wei Zuo(左正伟). Chin. Phys. B, 2025, 34(1): 010306.
[4] Opinion consensus incorporating higher-order interactions in individual-collective networks
Shun Ye(叶顺), Li-Lan Tu(涂俐兰), Xian-Jia Wang(王先甲), Jia Hu(胡佳), and Yi-Chao Wang(王薏潮). Chin. Phys. B, 2024, 33(7): 070201.
[5] Optimization of communication topology for persistent formation in case of communication faults
Guo-Qiang Wang(王国强), He Luo(罗贺), Xiao-Xuan Hu(胡笑旋), and Jian-Wei Tai(台建玮). Chin. Phys. B, 2023, 32(7): 078901.
[6] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[7] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[8] Information flow between stock markets: A Koopman decomposition approach
Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2022, 31(1): 018902.
[9] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[10] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
[11] Distance-based formation tracking control of multi-agent systems with double-integrator dynamics
Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭). Chin. Phys. B, 2018, 27(6): 060202.
[12] Ranking important nodes in complex networks by simulated annealing
Yu Sun(孙昱), Pei-Yang Yao(姚佩阳), Lu-Jun Wan(万路军), Jian Shen(申健), Yun Zhong(钟赟). Chin. Phys. B, 2017, 26(2): 020201.
[13] Structural and robustness properties of smart-city transportation networks
Zhang Zhen-Gang (张振刚), Ding Zhuo (丁卓), Fan Jing-Fang (樊京芳), Meng Jun (孟君), Ding Yi-Min (丁益民), Ye Fang-Fu (叶方富), Chen Xiao-Song (陈晓松). Chin. Phys. B, 2015, 24(9): 090201.
[14] Rigidity based formation tracking for multi-agent networks
Bai Lu (白璐), Chen Fei (陈飞), Lan Wei-Yao (兰维瑶). Chin. Phys. B, 2015, 24(9): 090206.
[15] Statistical physics of hard combinatorial optimization:Vertex cover problem
Zhao Jin-Hua (赵金华), Zhou Hai-Jun (周海军). Chin. Phys. B, 2014, 23(7): 078901.
No Suggested Reading articles found!