Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020601    DOI: 10.1088/1674-1056/ad9e9a
INSTRUMENTATION AND MEASUREMENT   Next  

Grating pitch comparison measurement based on Cr atomic transition frequency and Si lattice constant

Jingtong Feng(冯婧桐)1,2,3,4,5,6, Rao Xu(徐娆)1,2,3,4,5,6, Ziruo Wu(吴子若)7, Lihua Lei(雷李华)8, Yingfan Xiong(熊英凡)1,2,3,4,5,6, Zhaohui Tang(唐朝辉)1,2,3,4,5,6, Guangxu Xiao(肖光旭)1,2,3,4,5,6, Yuying Xie(解钰莹)1,2,3,4,5,6†, Dongbai Xue(薛栋柏)1,2,3,4,5,6, Xiao Deng(邓晓)1,2,3,4,5,6, Xinbin Cheng(程鑫彬)1,2,3,4,5,6, and Tongbao Li(李同保)1,2,3,4,5,6
1 National Metrology and Testing Center for Integrated Circuit Measurement and Inspection Equipment Industry (Shanghai), Tongji University, Shanghai 200092, China;
2 Institute of Precision Optical Engineering, Tongji University, Shanghai 200092, China;
3 MOE Key Laboratory of Advanced Micro-Structured Materials, Tongji University, Shanghai 200092, China;
4 Shanghai Frontiers Science Center of Digital Optics, Tongji University, Shanghai 200092, China;
5 Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, Tongji University, Shanghai 200092, China;
6 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
7 Shanghai Metric Optics Technology Co., Ltd., Shanghai 201108, China;
8 Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
Abstract  Traceability is the fundamental premise of all metrological activities. The establishment of a traceability chain characterized by a shortened structure, while simultaneously enabling on-site traceability, represents a key trend in the advancement of metrology. This study explores the periodic accuracy and overall uniformity of self-traceable gratings, employing multilayer film gratings with a nominal period of 25.00 nm as the medium. We present a comparative analysis of measurement capabilities in a self-traceable grating calibration system characterized by a ‘top-down’ calibration approach and a Si lattice constant calibration system characterized by a ‘bottom-up’ calibration approach. The results indicate that the values obtained for the multilayer film grating periods, calibrated using the self-traceable grating system, are 24.40 nm with a standard deviation of 0.11 nm. By comparing with the values derived from the Si lattice constant, which yield 24.34 nm with a standard deviation of 0.14 nm, the validity and feasibility of the self-traceable calibration system are confirmed. This system extends and complements existing metrological frameworks, offering a precise pathway for traceability in precision engineering and nanotechnology research.
Keywords:  nanometrology      self-traceable standard material      Si lattice constant  
Received:  29 September 2024      Revised:  12 November 2024      Accepted manuscript online:  13 December 2024
PACS:  06.20.-f (Metrology)  
  06.20.fb (Standards and calibration)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61925504 and 52475563), the National Key Research and Development Program of China (Grant Nos. 2022YFF0607600 and 2022YFF0605502), Key Laboratory of Metrology and Calibration Technology Fund Project (Grant No. JLKG2023001B001), and Aeronautical Science Foundation Project (Grant No. 20230056038001).
Corresponding Authors:  Yuying Xie     E-mail:  23310117@tongji.edu.cn

Cite this article: 

Jingtong Feng(冯婧桐), Rao Xu(徐娆), Ziruo Wu(吴子若), Lihua Lei(雷李华), Yingfan Xiong(熊英凡), Zhaohui Tang(唐朝辉), Guangxu Xiao(肖光旭), Yuying Xie(解钰莹), Dongbai Xue(薛栋柏), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), and Tongbao Li(李同保) Grating pitch comparison measurement based on Cr atomic transition frequency and Si lattice constant 2025 Chin. Phys. B 34 020601

[1] Dai G, Heidelmann M, Kubel C, Prang R, Fl ugge J and Bosse H 2013 Measurement Science and Technology 24 085001
[2] Orji N G, Badaroglu M, Barnes B M, Beitia C, Bunday B D, Celano U, Kline R J, Neisser M, Obeng Y and Vladar A E 2018 Nat. Electron. 1 532
[3] Deng X, Yin Z, Dai G, Xiao G, Tang Z, Shen J, Zhou T, Xue D, Xie Y and He C 2024 Measurement Science and Technology 35 125009
[4] Basile G, Bergamin A, Cavagnero G, Mana G, Vittone E and Zosi G 1994 Phys. Rev. Lett. 72 3133
[5] Dai G, Hu X and Degenhardt J 2022 Surface Topography: Metrology and Properties 10 015018
[6] Dirscherl K, Garnæs J, Nielsen L, Jørgensen J F and Sørensen M P 2000 Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement and Phenomena 18 621
[7] Wu Z, Cai Y, Wang X, Zhang L, Deng X, Cheng X and Li T 2019 Chin. Phys. B 28 030601
[8] McClelland J J, Scholten R E, Palm E C and Celotta R J 1993 Science 262 877
[9] McClelland J J, Anderson W R, Bradley C C, Walkiewicz M, Celotta R J, Jurdik E and Deslattes R D 2003 Journal of Research of the National Institute of Standards and Technology 108 99
[10] Misumi I, Lu M, Tanaka H, Sugawara K, Gonda S and Kurosawa T 2008 Measurement Science and Technology 19 045101
[11] Dai G, Koenders L, Pohlenz F, Dziomba T and Danzebrink H U 2005 Measurement Science and Technology 16 1241
[12] Chen J, Liu J, Wang X, Zhang L, Deng X, Cheng X and Li T 2017 Measurement Science Review 17 264
[13] Dahlen G, Osborn M, Okulan N, Foreman W, Chand A and Foucher J 2005 Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement and Phenomena 23 2297
[14] Binnig G, Quate C F and Gerber C 1986 Phys. Rev. Lett. 56 930
[15] Dai G, Hahm K, Bosse H and Dixson R G 2017 Measurement Science and Technology 28 065010
[16] Deng X, Li T and Cheng X 2022 Optics and Precision Engineering 30 2608
[17] Kuchibhatla S VNT, Karakoti A S, Bera D and Seal S 2007 Progress in Materials Science 52 699
[18] Misumi I, Dai G, Lu M, Sato O, Sugawara K, Gonda S, Takatsuji T, Danzebrink H U and Koenders L 2010 Measurement Science and Technology 21 035105
[19] Takenaka H, Hatayama M, Ito H, Ohchi T, Takano A, Kurosawa S, Itoh H and Ichimura S 2011 Journal of Surface Analysis 17 264
[20] Misumi I, Gonda S, Kurosawa T and Takamasu K 2003 Measurement Science and Technology 14 463
[21] Lin Z, Yao Y, Zhou T, Xue D, Gu Z, Deng X, Cheng X and Li T 2022 Metrology Science and Technology 66 3
[22] Deng X, Tan W, Tang Z, Lin Z, Cheng X and Li T 2022 Nanomanufacturing and Metrology 5 179
[1] Improving cutoff frequency estimation via optimized π-pulse sequence
Wang-Sheng Zheng(郑王升), Chen-Xia Zhang(张晨霞), and Bei-Li Gong(龚贝利). Chin. Phys. B, 2025, 34(1): 010309.
[2] Frequency-modulated continuous-wave multiplexed gas sensing based on optical frequency comb calibration
Linhua Jia(贾琳华), Xinghua Qu(曲兴华), and Fumin Zhang (张福民). Chin. Phys. B, 2024, 33(9): 094201.
[3] Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction
Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿). Chin. Phys. B, 2024, 33(8): 080601.
[4] Imaging plate scanners calibration and the attenuation behavior of imaging plate signals
Nan Bo(薄楠) and Nai-Yan Wang(王乃彦). Chin. Phys. B, 2024, 33(6): 060701.
[5] Measuring small longitudinal phase shifts via weak measurement amplification
Kai Xu(徐凯), Xiao-Min Hu(胡晓敏), Meng-Jun Hu(胡孟军), Ning-Ning Wang(王宁宁), Chao Zhang(张超), Yun-Feng Huang(黄运锋), Bi-Heng Liu(柳必恒), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(3): 030602.
[6] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[7] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[8] Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
Zonglei Mou(牟宗磊), Xiao Han(韩笑), and Ruo Hu(胡若). Chin. Phys. B, 2023, 32(11): 110401.
[9] Simulation research on surface growth process of positive and negative frequency detuning chromium atom lithographic gratings
Zhi-Jun Yin(尹志珺), Zhao-Hui Tang(唐朝辉), Wen Tan(谭文), Guang-Xu Xiao(肖光旭), Yu-Lin Yao(姚玉林), Dong-Bai Xue(薛栋柏), Zhen-Jie Gu(顾振杰), Li-Hua Lei(雷李华), Xiong Dun(顿雄), Xiao Deng(邓晓), Xin-Bin Cheng(程鑫彬), and Tong-Bao Li(李同保). Chin. Phys. B, 2023, 32(10): 100601.
[10] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[11] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[12] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[13] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[14] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[15] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
No Suggested Reading articles found!