SPECIAL TOPIC — Moiré physics in two-dimensional materials |
Prev
|
|
|
Valley-selective manipulation of moiré excitons through optical Stark effect |
Chenran Xu(徐晨燃)1,2,†, Jichen Zhou(周纪晨)1,2, Zhexu Shan(单哲旭)1,2, Wenjian Su(苏文健)1,2, Kenji Watanabe3, Takashi Taniguchi4, Dawei Wang(王大伟)1,2, and Yanhao Tang(汤衍浩)1,2 |
1 School of Physics, Zhejiang University, Hangzhou 310027, China; 2 Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou 310027, China; 3 Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; 4 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan |
|
|
Abstract Semiconductor moiré superlattices provide great platforms for exploring exotic collective excitations. Optical Stark effect, a shift of the electronic transition in the presence of a light field, provides an ultrafast and coherent method of manipulating matter states, which, however, has not been demonstrated in moiré materials. Here, we report the valley-selective optical Stark effect of moiré excitons in the WSe$_{2}$/WS$_{2}$ superlattice by using transient reflection spectroscopy. Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiré excitons, corresponding to pseudo-magnetic fields as large as 34 T. Our results provide a route to coherently manipulate exotic states in moiré superlattices.
|
Received: 28 August 2024
Revised: 03 September 2024
Accepted manuscript online: 18 September 2024
|
PACS:
|
71.35.-y
|
(Excitons and related phenomena)
|
|
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1402400 and 2022YFA1405400), the National Natural Science Foundation of China (Grant Nos. 11934011 and 12274365), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR24A040001), and Open project of Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education) of Shanghai Jiao Tong University. K.W. and T.T. acknowledge support from the JSPS KAKENHI (Grant Nos. 20H00354 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan. |
Corresponding Authors:
Chenran Xu
E-mail: crxu@zju.edu.cn
|
Cite this article:
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩) Valley-selective manipulation of moiré excitons through optical Stark effect 2025 Chin. Phys. B 34 017102
|
[1] Ye Z, Sun D and Heinz T F 2017 Nat. Phys. 13 26 [2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [3] Vasa P, Wang W, Pomraenke R, Maiuri M, Manzoni C, Cerullo G and Lienau C 2015 Phys. Rev. Lett. 114 036802 [4] Muller A, Fang W, Lawall J and Solomon G S 2009 Phys. Rev. Lett. 103 217402 [5] Huang D, Choi J, Shih C K and Li X 2022 Nat. Nanotechnol. 17 227 [6] Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F and Shan J 2021 Nat. Nanotechnol. 16 52 [7] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2019 Nature 567 76 [8] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I and Tartakovskii A I 2019 Nature 567 81 [9] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66 [10] Naik M H, Regan E C, Zhang Z, Chan Y H, Li Z, Wang D, Yoon Y, Ong C S, Zhao W, Zhao S, Utama M I B, Gao B, Wei X, Sayyad M, Yumigeta K, Watanabe K, Taniguchi T, Tongay S, da Jornada F H, Wang F and Louie S G 2022 Nature 609 52 [11] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, Macdonald A H and Li X 2019 Nature 567 71 [12] Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L and Zhang G 2023 Phys. Rev. Lett. 131 256201 [13] Du L, Molas M R, Huang Z, Zhang G, Wang F and Sun Z 2023 Science 379 1313 [14] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 21001 [15] Sie E J, McLver J W, Lee Y H, Fu L, Kong J and Gedik N 2015 Nat. Mater. 14 290 [16] Kim J, Hong X, Jin C, Shi S F, Chang C Y S, Chiu M H, Li L J and Wang F 2014 Science 346 1205 [17] Slobodeniuk A O, Koutenský P, Bartoš M, Trojánek F, Malý P, Novotný T and Kozák M 2023 npj 2D Mater. Appl. 7 17 [18] Cunningham P D, Hanbicki A T, Reinecke T L, McCreary K M and Jonker B T 2019 Nat. Commun. 10 5539 [19] Sim S, Lee D, Noh M, Cha S, Soh C H, Sung J H, Jo M ho and Choi H 2016 Nat. Commun. 7 13569 [20] Sie E J, Lui C H, Lee Y H, Kong J and Gedik N 2016 Nano Lett. 16 7421 [21] Yong C K, Horng J, Shen Y, Cai H, Wang A, Yang C S, Lin C K, Zhao S, Watanabe K, Taniguchi T and Tongay S 2018 Nat. Phys. 14 1092 [22] Zhang W L, Li X J, Wang S S, Zheng C Y, Li X F and Rao Y J 2019 Nanoscale 11 4571 [23] LaMountain T, Nelson J, Lenferink E J, Amsterdam S H, Murthy A A, Zeng H, Marks T J, Dravid V P, Hersam M C and Stern N P 2021 Nat. Commun. 12 4530 [24] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614 [25] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2019 Nature 567 76 [26] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Mak K F 2020 Nature 579 353 [27] Gobato Y G, de Brito C S, Chaves A, Prosnikov M A, Wózniak T, Guo S, Barcelos I D, Milošević M V, Withers F and Christianen P C M 2022 Nano Lett. 22 8641 [28] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D and Rothschild M 2018 Small 14 1801483 [29] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [30] Andersen T I, Scuri G, Sushko A, De Greve K, Sung J, Zhou Y, Wild D S, Gelly R J, Heo H, Bérubé D, Joe A Y, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Park H and Lukin M D 2021 Nat. Mater. 20 480 [31] Xiong R, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S and Jin C 2023 Science 380 860 [32] Lian Z, Meng Y, Ma L, Maity I, Yan L, Wu Q, Huang X, Chen D, Chen X, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Lischner J, Cui Y T and Shi S F 2024 Nat. Phys. 20 34 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|