INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influences of short-term and long-term plasticity of memristive synapse on firing activity of neuronal network |
Zhi-Jun Li(李志军)† and Jing Zhang(张晶) |
School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract Synaptic plasticity can greatly affect the firing behavior of neural networks, and it specifically refers to changes in the strength, morphology, and function of synaptic connections. In this paper, a novel memristor model, which can be configured as a volatile and nonvolatile memristor by adjusting its internal parameter, is proposed to mimic the short-term and long-term synaptic plasticity. Then, a bi-neuron network model, with the proposed memristor serving as a coupling synapse and the external electromagnetic radiation being emulated by the flux-controlled memristors, is established to elucidate the effects of short-term and long-term synaptic plasticity on firing activity of the neuron network. The resultant seven-dimensional (7D) neuron network has no equilibrium point and its hidden dynamical behavior is revealed by phase diagram, time series, bifurcation diagram, Lyapunov exponent spectrum, and two-dimensional (2D) dynamic map. Our results show the short-term and long-term plasticity can induce different bifurcation scenarios when the coupling strength increases. In addition, memristor synaptic plasticity has a great influence on the distribution of firing patterns in the parameter space. More interestingly, when exploring the synchronous firing behavior of two neurons, the two neurons can gradually achieve phase synchronization as the coupling strength increases along the opposite directions under two different memory attributes. Finally, a microcontroller-based hardware system is implemented to verify the numerical simulation results.
|
Received: 11 July 2024
Revised: 10 September 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
87.19.ll
|
(Models of single neurons and networks)
|
|
87.19.lj
|
(Neuronal network dynamics)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 62171401 and 62071411). |
Corresponding Authors:
Zhi-Jun Li
E-mail: lizhijun@xtu.edu.cn
|
Cite this article:
Zhi-Jun Li(李志军) and Jing Zhang(张晶) Influences of short-term and long-term plasticity of memristive synapse on firing activity of neuronal network 2024 Chin. Phys. B 33 128701
|
[1] Xu F, Zhang J, Fang T, Huang S and Wang M 2018 Nonlinear Dyn. 92 1395 [2] Dias C, Castro D, Aroso M, Ventura J and Aguiar P 2022 ACS Appl. Electron. Mater. 4 2380 [3] Mariano P M and Spadini M 2024 Physica D 458 133993 [4] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500 [5] Hindmarsh J L and Rose R M 1982 Nature 296 162 [6] Izhikevich E M 2003 IEEE Trans. Neural Network 14 1569 [7] Izhikevich E M 2006 Scholarpedia 1 1349 [8] Huang L,Wang S, Lei T, Huang K and Li C 2024 Int. J. Bifurcat. Chaos 34 2450022 [9] Njitacke Z T, Kengne J and Fotsin H B 2019 Int. J. Dyn. Control 7 36 [10] Lai Q, Wan Z, Zhang H and Chen G 2023 IEEE Trans. Neural Networks Learn. Syst. 34 7824 [11] Zhang S, Zheng J,Wang X and Zeng Z 2021 Chaos, Solitons and Fractals 145 110761 [12] Ge M, Xu Y, Lu L, Zhao Y, Yang L, Zhan X and Jia Y 2018 IET Syst. Biol. 12 177 [13] Wu K, Wang T, Wang C, Du T and Lu H 2018 Neural Comput. Appl. 30 551 [14] Li Z and Chen K 2023 Chaos, Solitons and Fractals 175 114017 [15] Chua L 1971 IEEE Trans. Circuit Syst. 18 507 [16] Innocenti G, Tesi A, Di Marco M and Forti M 2022 Emerging Sel. Top. Circuits Syst. 12 735 [17] Ascoli A, Slesazeck S, Mähne H, Tetzlaff R and Mikolajick T 2015 IEEE Trant. Circuits-I 62 1165 [18] Bao H, Chen M, Wu H G and Bao B C 2020 Sci. China-Technol. Sci. 63 603 [19] Li C L, Li Z Y, FengW, Tong Y N, Du J R andWei D Q 2019 AEU-INT J. Electron. C 110 152861 [20] Bao B, Peol M A, Bao H, Chen M, Li H and Chen B 2021 Chaos, Solitons and Fractals 144 110744 [21] Du C, Liu L, Zhang Z and Yu S 2021 Chaos, Solitons and Fractals 148 111023 [22] Chen M, Luo X, Suo Y, Xu Q and Wu H 2023 Nonlinear Dyn. 111 7773 [23] Ma M L, Xie X H, Yang Y, Li Z J and Sun Y C 2023 Chin. Phys. B 32 058701 [24] Peng C, Li Z J,WangMJ and MaML 2023 Nonlinear Dyn. 111 16527 [25] Yu X, Bao H, Chen M and Bao B C 2023 Chaos, Solitons and Fractals 171 113442 [26] Bao H, Yu X, Zhang Y, Liu X and Chen M 2023 Chaos, Solitons and Fractals 177 114167 [27] Chen M, Luo X, Suo Y, Xu Q and Wu H 2023 Nonlinear Dyn. 111 7773 [28] Lin H, Wang C, Sun J, Zhang X, Sun Y and Iu H H 2023 Chaos, Solitons and Fractals 166 112905 [29] Takembo C N, Mvogo A, Ekobena Fouda H P and Kofan eT C 2019 Nonlinear Dyn. 95 1067 [30] Vinaya M and Ignatius R P 2019 Int. J. Mod. Phys. C 30 1950047 [31] An X, Xiong L, Shi Q, Qiao S and Zhang L 2023 Nonlinear Dyn. 111 9509 [32] Lai Q and Yang L 2024 Chaos 34 013145 [33] Vinaya M and Ignatius R P 2020 Nonlinear Dyn. 101 2369 [34] Kourosh-Arami M, Komaki A, Gholami M, Marashi S H and Hejazi S 2023 J. Physiol. Sci. 73 33 [35] Magee J C and Grienberger C 2020 Annu. Rev. Neurosci. 43 95 [36] Sargsyan A R, Melkonyan A A, Papatheodoropoulos C, Mkrtchian H H and Kostopoulos G K 2003 Neural Networks 16 1161 [37] Oner M, Cheng P T, Wang H Y, Chen M C and Lin H 2024 Biochem. Biophys. Res. Commun. 710 149874 [38] Madadi Asl M, Valizadeh A and Tass P A 2018 Sci. Rep. 8 12068 [39] Madadi Asl M and Ramezani Akbarabadi S 2021 Plos One 16 e0257228 [40] Madadi Asl M and Ramezani Akbarabadi S 2023 Cogn. Neurodynamics 17 523 [41] Chen L, Li C, Huang T, Chen Y,Wen S and Qi J 2013 Phys. Lett. A 377 3260 [42] ZhouW,Wen S, Liu Y, Liu L, Liu X and Chen L 2023 Neural Networks 158 293 [43] Chen L, Zhou W, Li C and Huang J 2021 Neurocomputing 456 126 [44] Zhang J and Li Z J 2024 Nonlinear Dyn. 112 6647 [45] Li C, Zhang X, Chen P, Zhou K, Yu J and Wu G 2023 iScience 26 106315 [46] Wang Y, Wang G, Shen Y and Iu H H C 2020 Circuits Syst. Signal Process 39 3496 [47] Mannan Z I, Kim H and Chua L 2021 Sensors 21 644 [48] Zhang X, Liu S, Zhao X,Wu F,Wu Q and Wang W2017 IEEE Electron Dev. Lett. 38 1208 [49] Wu L, Liu H, Lin J and Wang S 2021 IEEE Trans. Electron Dev. 68 1622 [50] Chua L 2018 Appl. Phys. A 124 563 [51] Deperrois N and Graupner M 2020 PLoS Comput. Biol. 16 e1008265 [52] Wen L and Ong C K 2024 Int. J. Bifurcation Chaos 34 2450040 [53] Shakib M A, Gao Z and Lamuta C 2023 ACS Appl. Electron. Mater. 5 4875 [54] Chua L 2014 Semicond. Sci. Technol. 29 104001 [55] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Phys. Rep. 637 1 [56] Shavikloo M, Esmaeili A, Valizadeh A and Madadi Asl M 2023 Cogn. Neurodynamics 18 631 [57] Schmalz J and Kumar G 2019 Front. Comput. Neurosci. 13 61 [58] Hu X, Jiang B, Chen J and Liu C 2022 Eur. Phys. J. Plus 137 895 [59] Wang H X, Lu Q S and Shi X 2010 Chin. Phys. B 19 060509 [60] Njitacke Z T, Tsafack N, Ramakrishnan B, Rajagopal K, Kengne J and Awrejcewicz J 2021 Chaos, Solitons and Fractals 153 111577 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|