|
|
Freezing imaginarity of quantum states based on ℓ1-norm |
Shuo Han(韩烁), Bingke Zheng(郑冰轲), and Zhihua Guo(郭志华) |
School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract We discuss freezing of quantum imaginarity based on $\ell_1$-norm. Several properties about a quantity of imaginarity based on $\ell_1$-norm are revealed. For a qubit (2-dimensional) system, we characterize the structure of real quantum operations that allow for freezing the quantity of imaginarity of any state. Furthermore, we characterize the structure of local real operations which can freeze the quantity of imaginarity of a class of $N$-qubit quantum states.
|
Received: 04 August 2024
Revised: 11 September 2024
Accepted manuscript online: 18 September 2024
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12271325) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JM-294). |
Corresponding Authors:
Zhihua Guo
E-mail: guozhihua@snnu.edu.cn
|
Cite this article:
Shuo Han(韩烁), Bingke Zheng(郑冰轲), and Zhihua Guo(郭志华) Freezing imaginarity of quantum states based on ℓ1-norm 2024 Chin. Phys. B 33 100306
|
[1] Renou M O, Trillo D, Weilenmann M, et al. 2021 Nature 600 625 [2] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003 [3] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [4] Bennett C H and DiVincenzo D P 2000 Nature 404 247 [5] Vewinger F, Heinz M, Garcia Fernandez R, Vitanov N V and Bergmann K 2003 Phys. Rev. Lett. 91 213001 [6] Baek K, Sohbi A, Lee J, Kim J and Nha H 2020 New J.Phys. 22 093019 [7] Sun Y and Luo S 2021 Ann. Phys-Berlin 533 2100303 [8] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922 [9] Liu S and Fan H 2023 Chin. Phys. B 32 110304 [10] Bai Z and Du S 2024 Phys. Scr. 99 105102 [11] Yang L and Xia Y 2017 Chin. Opt. Lett. 15 052701 [12] Yang Y, Wang A M, Cao L Z, Zhao J Q and Lu H X 2018 Chin. Phys. Lett. 35 080301 [13] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303 [14] Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602 [15] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett 114 210401 [16] Budiyono A and Dipojono H K 2023 Phys. Rev. A 107 022408 [17] Hu M L and Fan H 2016 Sci. Rep. 6 29260 [18] Pinto M A and P A Brandao 2022 Opt. Lett. 47 3055-3058 [19] Li J H, Chen J, Mu X J, et al. 2017 Appl. Opt. 56 8335-8339 [20] Wu K D, Kondra T V, Rana S, et al. 2021 Phys. Rev. Lett. 126 090401 [21] Wu K D, Kondra T V, Scandolo C M, et al. 2023 arXiv: 2301.04782[hep-ph] [22] Wu K D, Kondra T V, Rana S, et al. 2021 Phys. Rev. A 103 032401 [23] Chen Q, Gao T and Yan F 2023 Sci. China Phys. Mech. 66 280312 [24] De Grandi C, Polkovnikov A and Sandvik A W 2011 Phys. Rev. B 84 224303 [25] Hickey A and Gour G 2018 J. Phys. A: Math. Theor. 51 414009 [26] Xue S, Guo J, Li P, Ye M and Li Y 2021 Quantum Inf. Process. 20 10 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|