Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100306    DOI: 10.1088/1674-1056/ad7c2f
GENERAL Prev   Next  

Freezing imaginarity of quantum states based on 1-norm

Shuo Han(韩烁), Bingke Zheng(郑冰轲), and Zhihua Guo(郭志华)
School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China
Abstract  We discuss freezing of quantum imaginarity based on $\ell_1$-norm. Several properties about a quantity of imaginarity based on $\ell_1$-norm are revealed. For a qubit (2-dimensional) system, we characterize the structure of real quantum operations that allow for freezing the quantity of imaginarity of any state. Furthermore, we characterize the structure of local real operations which can freeze the quantity of imaginarity of a class of $N$-qubit quantum states.
Keywords:  imaginarity freezing      $\ell_1$-norm      real operation  
Received:  04 August 2024      Revised:  11 September 2024      Accepted manuscript online:  18 September 2024
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12271325) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JM-294).
Corresponding Authors:  Zhihua Guo     E-mail:  guozhihua@snnu.edu.cn

Cite this article: 

Shuo Han(韩烁), Bingke Zheng(郑冰轲), and Zhihua Guo(郭志华) Freezing imaginarity of quantum states based on 1-norm 2024 Chin. Phys. B 33 100306

[1] Renou M O, Trillo D, Weilenmann M, et al. 2021 Nature 600 625
[2] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[3] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[4] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[5] Vewinger F, Heinz M, Garcia Fernandez R, Vitanov N V and Bergmann K 2003 Phys. Rev. Lett. 91 213001
[6] Baek K, Sohbi A, Lee J, Kim J and Nha H 2020 New J.Phys. 22 093019
[7] Sun Y and Luo S 2021 Ann. Phys-Berlin 533 2100303
[8] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
[9] Liu S and Fan H 2023 Chin. Phys. B 32 110304
[10] Bai Z and Du S 2024 Phys. Scr. 99 105102
[11] Yang L and Xia Y 2017 Chin. Opt. Lett. 15 052701
[12] Yang Y, Wang A M, Cao L Z, Zhao J Q and Lu H X 2018 Chin. Phys. Lett. 35 080301
[13] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
[14] Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602
[15] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett 114 210401
[16] Budiyono A and Dipojono H K 2023 Phys. Rev. A 107 022408
[17] Hu M L and Fan H 2016 Sci. Rep. 6 29260
[18] Pinto M A and P A Brandao 2022 Opt. Lett. 47 3055-3058
[19] Li J H, Chen J, Mu X J, et al. 2017 Appl. Opt. 56 8335-8339
[20] Wu K D, Kondra T V, Rana S, et al. 2021 Phys. Rev. Lett. 126 090401
[21] Wu K D, Kondra T V, Scandolo C M, et al. 2023 arXiv: 2301.04782[hep-ph]
[22] Wu K D, Kondra T V, Rana S, et al. 2021 Phys. Rev. A 103 032401
[23] Chen Q, Gao T and Yan F 2023 Sci. China Phys. Mech. 66 280312
[24] De Grandi C, Polkovnikov A and Sandvik A W 2011 Phys. Rev. B 84 224303
[25] Hickey A and Gour G 2018 J. Phys. A: Math. Theor. 51 414009
[26] Xue S, Guo J, Li P, Ye M and Li Y 2021 Quantum Inf. Process. 20 10
[1] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[2] New construction of mutually unbiased bases for odd-dimensional state space
Chenghong Wang(王成红), Kun Wang(王昆), and Zhu-Jun Zheng(郑驻军). Chin. Phys. B, 2024, 33(8): 080304.
[3] Verifiable quantum secret sharing scheme based on orthogonal product states
Chen-Ming Bai(白晨明), Lu Liu(刘璐), and Sujuan Zhang(张素娟). Chin. Phys. B, 2024, 33(7): 070302.
[4] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[5] Wigner function of optical cumulant operator and its dissipation in thermo-entangled state representation
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2024, 33(6): 060307.
[6] Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
Y. Lahlou, B. Maroufi, and M. Daoud. Chin. Phys. B, 2024, 33(5): 050303.
[7] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[8] Enhancing quantum temporal steering via frequency modulation
Mengkai Wu(吴孟凯) and Weiwen Cheng(程维文). Chin. Phys. B, 2024, 33(5): 050306.
[9] Ascertaining the influences of auxiliary qubits on the Einstein-Podolsky-Rosen steering and its directions
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), Gang Zhang(张刚), and Min Kong(孔敏). Chin. Phys. B, 2024, 33(5): 050304.
[10] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[11] Complementary monogamy and polygamy properties among multipartite systems
Tao Li(李陶), Jing-Yi Zhou(周静怡), Qi Sun(孙琪), Zhi-Xiang Jin(靳志祥), Deng-Feng Liang(梁登峰), and Ting Luo(罗婷). Chin. Phys. B, 2024, 33(3): 030305.
[12] Genuine entanglement under squeezed generalized amplitude damping channels with memory
Mazhar Ali. Chin. Phys. B, 2024, 33(2): 020307.
[13] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[14] Sharing quantum nonlocality in the noisy scenario
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎). Chin. Phys. B, 2024, 33(1): 010302.
[15] Parameterized monogamy and polygamy relations of multipartite entanglement
Zhong-Xi Shen(沈中喜), Ke-Ke Wang(王珂珂), and Shao-Ming Fei(费少明). Chin. Phys. B, 2023, 32(12): 120303.
No Suggested Reading articles found!