Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104210    DOI: 10.1088/1674-1056/ad5d91
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization

Ya-Jie Zhang(张亚杰)1, Chao-Long Li(李潮龙)1, Jia-Qi Luan(栾迦淇)1, Ming Zhao(赵茗)2, Ding-Shan Gao(郜定山)2, and Pei-Li Li(李培丽)1,†
1 Faculty of Electrical and Optical Engineering, Nanjing University of Posts and Communications, Nanjing 210023, China;
2 Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Terahertz polarization conversion devices have significant potential applications in various fields such as terahertz imaging and spectroscopy. In this paper, we utilize genetic algorithms to topologically optimize the metasurface unit cells and design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics. By partitioning the metallic pattern layer into quadrants, the encoding length is effectively reduced, resulting in a shorter optimization time. The research results indicate that the converter possesses a polarization conversion efficiency ratio higher than 90% and a relative bandwidth ratio of 125% in a range of 0.231-0.995 THz. Meanwhile, it can maintain excellent polarization conversion properties when the incident angle of terahertz waves is less than 45$^\circ$ and the polarization angle is less than 15$^\circ$, demonstrating excellent practicality. New insights are provided for the design of terahertz wide-angle ultra-wideband polarization conversion devices, and the proposed metasurfce has potential applications in terahertz polarization imaging, spectroscopy and communication fields.
Keywords:  metasurface      polarization conversion      topology optimization      ultra-broadband  
Received:  23 April 2024      Revised:  13 June 2024      Accepted manuscript online:  02 July 2024
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China and the Open Project Program of Wuhan National Laboratory for Optoelectronics (Grant No. 2022WNLOKF012).
Corresponding Authors:  Pei-Li Li     E-mail:  lipl@njupt.edu.cn

Cite this article: 

Ya-Jie Zhang(张亚杰), Chao-Long Li(李潮龙), Jia-Qi Luan(栾迦淇), Ming Zhao(赵茗), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽) Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization 2024 Chin. Phys. B 33 104210

[1] Kutas M, Haase B, Bickert P, Riexinger F, Molter D and von Freymann G 2020 Science Advances 6 eaaz8065
[2] Nagatsuma T, Ducournau G and Renaud C C 2016 Nat. Photon. 10 371
[3] Mittleman D M 2018 Opt. Express 26 9417
[4] Xu S T, Fan F, Ji Y Y and Chang S J 2021 Opt. Express 29 8824
[5] Ako R T, Lee W S L, Atakaramians S, Bhaskaran M, Sriram S and Withayachumnankul W 2020 APL Photon. 5 046101
[6] Jing X F, Gui X C, Zhou P W and Hong Z 2018 J. Lightwave Technol. 36 2322
[7] Zhang Y H, Luan W M, Yan X N, Gao X Z, Zeng X D, Jin Z M, Ma G H and Yao J Q 2022 Appl. Phys. B 128 156
[8] Cheng Y Z, Gong R Z and Wu L 2017 Plasmonics 12 1113
[9] Zhou Q G, Li Y, Li Y Z, Yao N J and Huang Z M 2023 Chin. Phys. B 32 024201
[10] Qi Y P, Zhang B H, Liu C Q and Deng X Y 2020 IEEE Access 8 116675
[11] Xi Y, Jiang W, Hong T, Wei K and Gong S X 2021 Opt. Express 29 22427
[12] Xu H X, Hu G W, Wang Y Z, Wang C H, Wang M Z, Wang S J, Huang Y J, Genevet P, Huang W and Qiu C W 2021 Light: Sci. Appl. 10 75
[13] Ako R T, Lee W S L, Bhaskaran M, Sriram S and Withayachumnankul W 2019 APL Photon. 4 096104
[14] Gandhi C, Babu P R and Senthilnathan K 2019 Journal of Infrared, Millimeter, and Terahertz Waves 40 500
[15] Xu Z H, Sheng H Y, Wang Q L, Zhou L P and Shen Y C 2021 SN Applied Sciences 3 763
[16] Nagini K B S S and C D S 2022 IEEE Photonics Journal 14 1
[17] Bai J J, Chen T T, Wang S S, Xu W and Chang S J 2023 Appl. Phys. A 129 610
[18] Zhao J C, Li N and Cheng Y Z 2023 Opt. Commun. 536 129372
[19] Zhao J X, Song J L, Zhou Y, Liu Y C and Zhou J H 2020 Chin. Phys. Lett. 37 064204
[20] Li J S and Li X J 2022 Opt. Express 30 12823
[21] Li Z W and Li J S 2021 Appl. Opt. 60 2450
[22] Zhuang L Y, Zhang W J, Chao M H, Liu Q S, Cheng B, Song G F and Liu J T 2024 Opt. Mater. Express 14 483
[23] Du H T, Jiang M Z, Zeng L Z, Zhang L H, Xu W L, Zhang X W and Hu F R 2022 Chin. Phys. B 31 064210
[24] Yu F Y, Wang Q C, He M X, Shen X B, Meng D S, Zhu J B and Wen Q Y 2023 Euro. Phys. J. D 77 82
[25] Yan D X, Feng Q Y, Yuan Z W, Meng M, Li X J, Qiu G H and Li J N 2022 Chin. Phys. B 31 014211
[26] Li N C, Mei J S, Gong D G and Shi Y C 2022 Opt. Commun. 521 128581
[27] Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Xia S, Xu Z and Qu S B 2016 Appl. Phys. Lett. 109 014104
[28] Borgese M, Costa F, Genovesi S, Monorchio A and Manara G 2018 Scientific Reports 8 7651
[29] C D S and Karthikeyan S S 2019 IEEE Transactions on Antennas and Propagation 67 2819
[1] Compact magneto-optical traps using planar optics
Zhi Tan(谭智), Bo Lu(鹿博), Chengyin Han(韩成银), and Chaohong Lee(李朝红). Chin. Phys. B, 2024, 33(9): 093701.
[2] Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings
Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔). Chin. Phys. B, 2024, 33(6): 064205.
[3] Experimental realization of fractal fretwork metasurface for sound anomalous modulation
Jiajie He(何佳杰), Shumeng Yu(于书萌), Xue Jiang(江雪), and Dean Ta(他得安). Chin. Phys. B, 2024, 33(5): 054301.
[4] Wideband low-scattering metasurface with an in-band reconfigurable transparent window
Ying Zhu(朱瑛), Weixu Yang(杨维旭), Kun Duan(段坤), Tian Jiang(姜田), Junming Zhao(赵俊明), Ke Chen(陈克), and Yijun Feng(冯一军). Chin. Phys. B, 2024, 33(2): 024102.
[5] A 1-bit electronically reconfigurable beam steerable metasurface reflectarray with multiple polarization manipulations
Yan Shi(史琰), Xi-Ya Xu(徐茜雅), Shao-Ze Wang(王少泽), Wen-Yue Wei(魏文岳), and Quan-Wei Wu(武全伟). Chin. Phys. B, 2024, 33(1): 014201.
[6] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[7] Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array
Lifeng Ma(马丽凤), Shan Du(杜杉), Jun Chang(常军), Weilin Chen(陈蔚霖), Chuhan Wu(武楚晗), Xinxin Shi(石鑫鑫), Yi Huang(黄翼), Yue Zhong(钟乐), and Quanquan Mu(穆全全). Chin. Phys. B, 2023, 32(8): 084201.
[8] Design of an optically-transparent ultra-broadband microwave absorber
Mian Gao(高冕), Qiang Chen(陈强), Yue-Jun Zheng(郑月军), Fang Yuan(袁方), Zhan-Shan Sun(孙占山), and Yun-Qi Fu(付云起). Chin. Phys. B, 2023, 32(8): 084102.
[9] High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared region
Yuhang Gao(高雨航), Yu Tian(田宇), Qingguo Du(杜庆国), Yuanli Wang(王原丽), Qin Fu(付琴), Qiang Bian(卞强), Zhengying Li(李政颖), Shuai Feng(冯帅), and Fangfang Ren(任芳芳). Chin. Phys. B, 2023, 32(7): 074201.
[10] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[13] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[14] Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators
Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥). Chin. Phys. B, 2023, 32(12): 124303.
[15] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
No Suggested Reading articles found!