Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104203    DOI: 10.1088/1674-1056/ad6ccc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reconstruction algorithm for cross-waveband optical computing imaging

Jin-Tao Xie(谢锦涛)1,2, Shu-Hang Bie(别书航)1,2, Ming-Fei Li(李明飞)1,2,†, Yuan-Jin Yu(余远金)3, Yi-Fei Li(李毅飞)1, Jin-Guang Wang(王进光)1, Bao-Gang Quan(全保刚)1,2, and Ling-An Wu(吴令安)1,2,‡
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Automation, Beijing Institute of Technology, Beijing 100081, China
Abstract  In a single-pixel fast imaging setup, the data collected by the single-pixel detector needs to be processed by a computer, but the speed of the latter will affect the image reconstruction time. Here we propose two kinds of setups which are able to transform non-visible into visible light imaging, wherein their computing process is replaced by a camera integration mode. The image captured by the camera has a low contrast, so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging. The scheme is verified both by simulation and in actual experiments. The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.
Keywords:  optical computing imaging      single-pixel imaging  
Received:  30 June 2024      Revised:  31 July 2024      Accepted manuscript online:  08 August 2024
PACS:  42.30.-d (Imaging and optical processing)  
Corresponding Authors:  Ming-Fei Li, Ling-An Wu     E-mail:  mf_li@iphy.ac.cn;wula@iphy.ac.cn

Cite this article: 

Jin-Tao Xie(谢锦涛), Shu-Hang Bie(别书航), Ming-Fei Li(李明飞), Yuan-Jin Yu(余远金), Yi-Fei Li(李毅飞), Jin-Guang Wang(王进光), Bao-Gang Quan(全保刚), and Ling-An Wu(吴令安) Reconstruction algorithm for cross-waveband optical computing imaging 2024 Chin. Phys. B 33 104203

[1] Edgar M P, Gibson G M and Padgett M J 2019 Nat. Photon. 13 13
[2] Sun M J and Zhang J M 2019 Sensors 19 732
[3] Gong W, Zhao C, Yu H, Chen M, Xu W and Han S 2016 Sci. Rep. 6 26133
[4] Sun M J, Edgar M P, Gibson G M, Sun B, Radwell N, Lamb R and Padgett M J 2016 Nat. Commun. 7 12010
[5] Zhao W, Chen H, Yuan Y, Zheng H, Liu J, Xu Z and Zhou Y 2019 Phys. Rev. Appl. 12 034049
[6] Chen Q, Chamoli S K, Yin P, Wang X and Xu X 2018 Laser Phys. Lett. 15 126201
[7] Liang J, Gao L, Li C and Wang L V 2014 Opt. Lett. 39 430
[8] Torke P R, Nuster R and Paltauf G 2022 Opt. Lett. 47 1462
[9] Diebold A V, Imani M F, Sleasman T and Smith D R 2018 Optica 5 1529
[10] Olivieri L, Gongora J S T, Pasquazi A and Peccianti M 2018 ACS Photon. 5 3379
[11] Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605
[12] Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902
[13] Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901
[14] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374
[15] Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H and Truscott A G 2016 Nature 540 100
[16] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P and Ratner D 2018 Phys. Rev. Lett. 121 114801
[17] Kingston A M, Myers G R, Pelliccia D, Salvemini F, Bevitt J J, Garbe U and Paganin D M 2020 Phys. Rev. A 101 053844
[18] He Y H, Huang Y Y, Zeng Z R, Li Y F, Tan J H, Chen L M, Wu L A, Li M F, Quan B G, Wang S L and Liang T J 2021 Sci. Bull. 66 133
[19] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[20] He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A and Chen L M 2020 APL Photon. 5 056102
[21] Lane T J and Ratner D 2020 Opt. Express 28 5898
[22] Cheng J 2009 Opt. Express 17 7916
[23] Takhar D, Laska J N, Wakin M B, Duarte M E, Baron D, Sarvotham S, Kelly K E and Baraniuk R G 2006 Proc. SPIE 6065 606509
[24] Vaz P G, Amaral D, Requicha Ferreira L F, Morgado M and Cardoso J 2020 Opt. Express 28 11666
[25] Jiang W, Li X, Peng X and Sun B 2020 Opt. Express 28 7889
[26] Kanno H, Mikami H and Goda K 2020 Opt. Lett. 45 2339
[27] Hahamovich E, Monin S, Hazan Y and Rosenthal A 2021 Nat. Commun. 12 4516
[28] Xu Z H, Chen W, Penuelas J, Padgett M and Sun M J 2018 Opt. Express 26 2427
[29] Huang H, Li L, Ma Y and Sun M 2022 Electron. Mater. 3 93
[30] Kilcullen P, Ozaki T and Liang J 2022 Nat. Commun. 13 7879
[31] Bie S H, Xie J T, Zhang Y X, Li M F, Yu W K and Chen X H 2024 Opt. Lett. 49 2413
[32] Wang G, Zheng H, Tang Z, Zhou Y, Chen H, Liu J, He Y, Yuan Y, Li F and Xu Z 2020 Sci. Rep. 10 2493
[33] Harwit M and Sloane N J A 1979 Hadamard transform optics (Elsevier)
[1] Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星). Chin. Phys. B, 2024, 33(3): 034204.
[2] Complex-amplitude Fourier single-pixel imaging via coherent structured illumination
Hong-Yun Hou(侯红云), Ya-Nan Zhao(赵亚楠), Jia-Cheng Han(韩佳成), De-Zhong Cao(曹 德忠),Su-Heng Zhang(张素恒), Hong-Chao Liu(刘宏超), and Bao-Lai Liang(梁宝来). Chin. Phys. B, 2023, 32(6): 064201.
[3] Resolution-enhanced single-pixel imaging using the Hadamard transform matrix
Shu-Hang Bie(别书航), Chen-Hui Wang(王晨晖), Rui-Bing Lv(吕瑞兵), Qian-Qian Bao(鲍倩倩),Qiang Fu(付强), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(12): 128702.
[4] Fast Fourier single-pixel imaging based on Sierra-Lite dithering algorithm
Zhen-Yu Liang(梁振宇), Zheng-Dong Cheng(程正东), Yan-Yan Liu(刘严严), Kuai-Kuai Yu(于快快), Yang-Di Hu(胡洋頔). Chin. Phys. B, 2019, 28(6): 064202.
No Suggested Reading articles found!