ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Reconstruction algorithm for cross-waveband optical computing imaging |
Jin-Tao Xie(谢锦涛)1,2, Shu-Hang Bie(别书航)1,2, Ming-Fei Li(李明飞)1,2,†, Yuan-Jin Yu(余远金)3, Yi-Fei Li(李毅飞)1, Jin-Guang Wang(王进光)1, Bao-Gang Quan(全保刚)1,2, and Ling-An Wu(吴令安)1,2,‡ |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Automation, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract In a single-pixel fast imaging setup, the data collected by the single-pixel detector needs to be processed by a computer, but the speed of the latter will affect the image reconstruction time. Here we propose two kinds of setups which are able to transform non-visible into visible light imaging, wherein their computing process is replaced by a camera integration mode. The image captured by the camera has a low contrast, so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging. The scheme is verified both by simulation and in actual experiments. The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.
|
Received: 30 June 2024
Revised: 31 July 2024
Accepted manuscript online: 08 August 2024
|
PACS:
|
42.30.-d
|
(Imaging and optical processing)
|
|
Corresponding Authors:
Ming-Fei Li, Ling-An Wu
E-mail: mf_li@iphy.ac.cn;wula@iphy.ac.cn
|
Cite this article:
Jin-Tao Xie(谢锦涛), Shu-Hang Bie(别书航), Ming-Fei Li(李明飞), Yuan-Jin Yu(余远金), Yi-Fei Li(李毅飞), Jin-Guang Wang(王进光), Bao-Gang Quan(全保刚), and Ling-An Wu(吴令安) Reconstruction algorithm for cross-waveband optical computing imaging 2024 Chin. Phys. B 33 104203
|
[1] Edgar M P, Gibson G M and Padgett M J 2019 Nat. Photon. 13 13 [2] Sun M J and Zhang J M 2019 Sensors 19 732 [3] Gong W, Zhao C, Yu H, Chen M, Xu W and Han S 2016 Sci. Rep. 6 26133 [4] Sun M J, Edgar M P, Gibson G M, Sun B, Radwell N, Lamb R and Padgett M J 2016 Nat. Commun. 7 12010 [5] Zhao W, Chen H, Yuan Y, Zheng H, Liu J, Xu Z and Zhou Y 2019 Phys. Rev. Appl. 12 034049 [6] Chen Q, Chamoli S K, Yin P, Wang X and Xu X 2018 Laser Phys. Lett. 15 126201 [7] Liang J, Gao L, Li C and Wang L V 2014 Opt. Lett. 39 430 [8] Torke P R, Nuster R and Paltauf G 2022 Opt. Lett. 47 1462 [9] Diebold A V, Imani M F, Sleasman T and Smith D R 2018 Optica 5 1529 [10] Olivieri L, Gongora J S T, Pasquazi A and Peccianti M 2018 ACS Photon. 5 3379 [11] Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605 [12] Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902 [13] Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901 [14] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374 [15] Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H and Truscott A G 2016 Nature 540 100 [16] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P and Ratner D 2018 Phys. Rev. Lett. 121 114801 [17] Kingston A M, Myers G R, Pelliccia D, Salvemini F, Bevitt J J, Garbe U and Paganin D M 2020 Phys. Rev. A 101 053844 [18] He Y H, Huang Y Y, Zeng Z R, Li Y F, Tan J H, Chen L M, Wu L A, Li M F, Quan B G, Wang S L and Liang T J 2021 Sci. Bull. 66 133 [19] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682 [20] He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A and Chen L M 2020 APL Photon. 5 056102 [21] Lane T J and Ratner D 2020 Opt. Express 28 5898 [22] Cheng J 2009 Opt. Express 17 7916 [23] Takhar D, Laska J N, Wakin M B, Duarte M E, Baron D, Sarvotham S, Kelly K E and Baraniuk R G 2006 Proc. SPIE 6065 606509 [24] Vaz P G, Amaral D, Requicha Ferreira L F, Morgado M and Cardoso J 2020 Opt. Express 28 11666 [25] Jiang W, Li X, Peng X and Sun B 2020 Opt. Express 28 7889 [26] Kanno H, Mikami H and Goda K 2020 Opt. Lett. 45 2339 [27] Hahamovich E, Monin S, Hazan Y and Rosenthal A 2021 Nat. Commun. 12 4516 [28] Xu Z H, Chen W, Penuelas J, Padgett M and Sun M J 2018 Opt. Express 26 2427 [29] Huang H, Li L, Ma Y and Sun M 2022 Electron. Mater. 3 93 [30] Kilcullen P, Ozaki T and Liang J 2022 Nat. Commun. 13 7879 [31] Bie S H, Xie J T, Zhang Y X, Li M F, Yu W K and Chen X H 2024 Opt. Lett. 49 2413 [32] Wang G, Zheng H, Tang Z, Zhou Y, Chen H, Liu J, He Y, Yuan Y, Li F and Xu Z 2020 Sci. Rep. 10 2493 [33] Harwit M and Sloane N J A 1979 Hadamard transform optics (Elsevier) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|