|
|
Interference of harmonics emitted by different tunneling momentum channels in laser fields |
Ling-Yu Zhang(张玲玉)1, Zhuo-Xuan Xie(谢卓璇)1, Can Wang(王灿)1, Xin-Lei Ge(葛鑫磊)2, and Jing Guo(郭静)1,† |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 College of Physical Science and Technology, Bohai University, Jinzhou 121013, China |
|
|
Abstract By numerically solving the semiconductor Bloch equation (SBEs), we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses. The results show the enhancement of harmonics and the cut-off remains the same in the two-color field, which can be explained by the recollision trajectories and electron excitation from multi-channels. Based on the quantum path analysis, we investigate contribution of different ranges of the crystal momentum $k$ of ZnO to the harmonic yield, and find that in two-color laser fields, the intensity of the harmonic yield of different ranges from the crystal momentum makes a big difference and the harmonic intensity is depressed from all $k$ channels, which is related to the interferences between harmonics from symmetric $k$ channels.
|
Received: 21 May 2024
Revised: 01 July 2024
Accepted manuscript online: 02 July 2024
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074146) and the Natural Science Foundation of Jilin Province, China (Grant No. 20220101010JC). |
Corresponding Authors:
Jing Guo
E-mail: gjing@jlu.edu.cn
|
Cite this article:
Ling-Yu Zhang(张玲玉), Zhuo-Xuan Xie(谢卓璇), Can Wang(王灿), Xin-Lei Ge(葛鑫磊), and Jing Guo(郭静) Interference of harmonics emitted by different tunneling momentum channels in laser fields 2024 Chin. Phys. B 33 093201
|
[1] Li J, Lu J, Chew A, Han S, Li J L, Wu Y, Wang H, Ghimire S and Chang Z H 2020 Nat. Commun. 11 2748 [2] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535 [3] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138 [4] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H and Yang W F 2021 Chin. Phys. Lett. 38 063201 [5] Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B and Brabec T 2014 Phys. Rev. Lett. 113 073901 [6] Wu M X, You Y S, Ghimire S, Reis D A, Browne D A, Schafer K J and Gaarde M B 2017 Phys. Rev. A 96 063412 [7] Lang Y, Peng Z Y and Zhao Z X 2022 Chin. Phys. Lett. 39 114201 [8] Lang Y, Peng Z Y, Liu J L, Zhao Z X and Ghimire S 2022 Phys. Rev. Lett. 129 167402 [9] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330 [10] Song X H, Zuo R X, Yang S D, Li P C, Meier T and Yang W F 2019 Opt Express. 27 2225 [11] Du T Y, Tang D, Huang X H and Bian X B 2018 Phys. Rev. A 97 043413 [12] Song X H, Yang S D, Wang G F, Lin J H, Wang L, Meier T and Yang W F 2023 Opt. Express 31 18862 [13] Jin J Z, Liang H, Xiao X R, Wang M X, Chen S G, Wu X Y, Gong Q H and Peng L Y 2019 Phys. Rev. A 100 013412 [14] Navarrete F, Ciappina M F and Thumm U 2020 J. Phys. Conf. Ser. 1412 082006 [15] Schlaepfer F, Lucchini M, Sato S A, Volkov M, Kasmi L, Hartmann N, Rubio A, Gallmann L and Keller U 2018 Nat. Phys. 14 560 [16] Zhao J, Liu J L, Wang X W, Yuan J M and Zhao Z X 2022 Chin. Phys. Lett. 39 123201 [17] Vampa G and Brabec T 2017 J. Phys. B-At Mol. Opt. 50 083001 [18] Fu S L, Feng Y K, Li J B, Yue S J, Zhang X, Hu B T and Du H C 2020 Phys. Rev. A 101 023402 [19] Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein M and Lu P X 2019 Phys. Rev. Lett. 122 193901 [20] Sun N, Zhu X S, Li L, Lan P F and Lu P X 2021 Phys. Rev. A 103 053111 [21] Du T Y 2021 Phys. Rev. A 104 063110 [22] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201 [23] Qiao Y, Chen J Q, Huo Y Q, Liang H Q, Yu R X, Chen J G, Liu W J, Jiang S C and Yang Y J 2023 Phys. Rev. A 107 023523 [24] Qiao Y, Chen J Q, Zhou S S, Chen J G,Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205 [25] Yu C, Jiang S C and Lu R F 2019 Adv. Phys. X 4 1562982 [26] He Y L, Guo J, Gao F Y, Yang Z J, Zhang S Q and Liu X S 2021 Phys. Rev. A 104 013104 [27] Wu D, Li L, Zhan Y T, Huang T F, Cui H B, Li J P, Lan P F and Lu P X 2022 Phys. Rev. A 105 063101 [28] Vampa G, McDonald C R, Orlando G, Corkum P B and Brabec T 2015 Phys. Rev. B 91 064302 [29] Zaïr A, Holler M, Guandalini A, Schapper F, Biegert J, Gallmann L, Keller U, Wyatt A S, Monmayrant A, Walmsley I A, Cormier E, Auguste T, Caumes J P and Salières P 2008 Phys. Rev. Lett. 100 143902 [30] Shao T J, Lü L J, Liu J Q and Bian X B 2020 Phys. Rev. A 101 053421 [31] Wang Z, Park H, Lai Y H, Xu J L, Blaga C I, Yang F Y, Agostini P and DiMauro L F 2017 Nat. Commun. 8 1686 [32] Heide C, Kobayashi Y, Johnson A, Liu F, Heinz T, Reis D A and Ghimire S 2022 CLEO FF4N.5 [33] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett. 45 2874 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|