|
|
Time-energy distribution of photoelectron from atomic states with different magnetic quantum numbers in elliptically polarized laser fields |
Jingyang Xu(徐菁阳)1, Li Guo(郭丽)1,†, Xin Qi(齐昕)1, Ronghua Lu(陆荣华)2, Min Zhang(张敏)1,‡, Jingtao Zhang(张敬涛)1, and Jing Chen(陈京)3,4,§ |
1 Department of Physics, Shanghai Normal University, Shanghai 200234, China; 2 Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 3 Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; 4 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China |
|
|
Abstract A Wigner-distribution-like (WDL) function based on the strong-field approximation (SFA) theory is used to investigate the ionization time of the photoelectron emitted from the initial states with different magnetic quantum number $m$ in elliptically polarized electric fields. The saddle-point method is adopted for comparisons. For different $m$ states, a discrepancy exists in the WDL distributions of the photoelectrons emitted in a direction close to the major axis of the laser field ellipse. Based on the saddle-point analysis, this discrepancy can be ascribed to the interference between electrons ionized from two tunneling instants. Our results show that the relationships between the tunneling instants and kinetic energy of photoelectrons are the same for different $m$ initial states when the Coulomb potential is not considered. Our work sheds some light on the ionization-time information of electrons from different magnetic quantum states.
|
Received: 29 March 2024
Revised: 05 June 2024
Accepted manuscript online: 15 June 2024
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
33.80.Wz
|
(Other multiphoton processes)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: We thank W. Quan for helpful discussion. Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 12274300 and 12074261) |
Corresponding Authors:
Li Guo, Min Zhang, Jing Chen
E-mail: guoli@shnu.edu.cn;zhangminzm@shnu.edu.cn;chenjing@ustc.edu.cn
|
Cite this article:
Jingyang Xu(徐菁阳), Li Guo(郭丽), Xin Qi(齐昕), Ronghua Lu(陆荣华), Min Zhang(张敏), Jingtao Zhang(张敬涛), and Jing Chen(陈京) Time-energy distribution of photoelectron from atomic states with different magnetic quantum numbers in elliptically polarized laser fields 2024 Chin. Phys. B 33 093301
|
[1] Reiss H R 1980 Phys. Rev. A 22 1786 [2] Herath T, Yan L, Lee S K and Li W 2012 Phys. Rev. Lett. 109 043004 [3] Gajda M, Piraux B and Rzazewski K 1994 Phys. Rev. A 50 2528 [4] Barth I and Smirnova O 2011 Phys. Rev. A 84 063415 [5] Eckart S, Kunitski M, Richter M, Hartung A, Rist J, Trinter F, Fehre K, Schlott N, Henrichs K, Schmidt L P H, Jahnke T, Scöffler M, Liu K L, Barth I, Kaushal J, Morales F, Ivanov M, Smirnova O and Dörner R 2018 Nat. Phys. 14 701 [6] Li Y, Lan P F, Xie H, He M R, Zhu X S, Zhang Q B and Lu P X 2015 Opt. Express 23 028801 [7] Barth I and Lein M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204016 [8] Beiser S, Klaiber M and Kiyan I Y 2004 Phys. Rev. A 70 011402 [9] Barth I and Smirnova O 2013 Phys. Rev. A 87 065401 [10] Rey H F and van der Hart H W 2014 Phys. Rev. A 90 033402 [11] Patchkovskii S, Vrakking M J J, Villeneuve D M and Niikura H 2020 J. Phys. B: At. Mol. Opt. Phys. 53 134002 [12] Wang R R, Ma M Y, Wen L C, Guan Z, Yang Z Q, Jiao Z H, Wang G L and Zhao S F 2023 J. Opt. Soc. Am. B 40 1749 [13] Liu K, Ni H C, Renziehausen K, Rost J M and Barth I 2018 Phys. Rev. Lett. 121 203201 [14] Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M and Smirnova O 2015 Nat. Phys. 11 503 [15] Walker S, Kolanz L, Venzke J and Becker A 2021 Phys. Rev. Research 3 043051 [16] Walker S, Kolanz L, Venzke J and Becker A 2021 Phys. Rev. A 103 L061101 [17] Barth I and Smirnova O 2013 Phys. Rev. A 88 013401 [18] Barth I and Smirnova O 2013 Phys. Rev. A 87 013433 [19] Luo S Q, Li M, Xie W H, Liu K, Feng Y D, Du B J, Zhou Y M and Lu P X 2019 Phys. Rev. A 99 053422 [20] Ivanov I A 2016 Phys. Rev. A 93 053403 [21] Yuan M H and Bian X B 2015 Phys. Rev. A 101 013412 [22] Lin Z Y, Lin B Q and Chen Z X 2018 Acta Optica Sinica 38(6) 0602001 [23] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Diiörner R, Muller H G, Biiüttiker M and Keller U 2008 Science 322 1525 [24] Han M, Ge P P, Wang J G, Guo Z N, Fang Y Q, Ma X Y, Yu X Y, Deng Y K, Wörner H J, Gong Q H and Liu Y Q 2021 Nat. Photon. 15 765 [25] Yu M, Liu K, Li M, Yan J Q, Cao C P, Tan J, Liang J T, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2022 Light: Sci. Appl. 11 215 [26] Guo L, Zhao M, Quan W, Liu X J and Chen J 2023 Optica 10 1316 [27] Liu M M, Shao Y, Han M, Ge P P, Deng Y, Wu C Y, Gong Q H and Liu Y Q 2018 Phys. Rev. Lett. 120 043201 [28] Trabert D, Hartung A, Eckart S, Trinter F, Kalinin A, Schöffler M, Schmidt L Ph H, Jahnke T, Kunitski M and Dörner R 2018 Phys. Rev. Lett. 120 043202 [29] Wen L C, Jing W Q, Sun C P, Gao X H, Jiao Z H, Wang G L, Chen J H and Zhao S F 2023 J. Phys. B: At. Mol. Opt. Phys. 56 125601 [30] Xu S L, Zhang Q B, Fu X L, Huang X, Han X, Li M, Cao W and Lu P X 2020 Phys. Rev. A 102 063128 [31] Serebryannikov E E and Zheltikov A M 2016 Phys. Rev. Lett. 116 123901 [32] Guo L, Han S S and Chen J 2010 Opt. Express 18 1240 [33] Guo L, Han S S and Chen J 2012 Phys. Rev. A 86 053409 [34] Guo L, Chen S, Hu S L, Lu R H, Han S S, Zhang J T and Chen J 2022 J. Phys. B: At. Mol. Opt. Phys. 55 225401 [35] Radzig A A and Smirnov B M 1985 Reference Data on Atoms, Molecules and Ions [36] Figueira de Morisson Faria C, Schomerus H and Becker W 2002 Phys. Rev. A 66 043413 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|