Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 093301    DOI: 10.1088/1674-1056/ad58b3
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Time-energy distribution of photoelectron from atomic states with different magnetic quantum numbers in elliptically polarized laser fields

Jingyang Xu(徐菁阳)1, Li Guo(郭丽)1,†, Xin Qi(齐昕)1, Ronghua Lu(陆荣华)2, Min Zhang(张敏)1,‡, Jingtao Zhang(张敬涛)1, and Jing Chen(陈京)3,4,§
1 Department of Physics, Shanghai Normal University, Shanghai 200234, China;
2 Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
4 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
Abstract  A Wigner-distribution-like (WDL) function based on the strong-field approximation (SFA) theory is used to investigate the ionization time of the photoelectron emitted from the initial states with different magnetic quantum number $m$ in elliptically polarized electric fields. The saddle-point method is adopted for comparisons. For different $m$ states, a discrepancy exists in the WDL distributions of the photoelectrons emitted in a direction close to the major axis of the laser field ellipse. Based on the saddle-point analysis, this discrepancy can be ascribed to the interference between electrons ionized from two tunneling instants. Our results show that the relationships between the tunneling instants and kinetic energy of photoelectrons are the same for different $m$ initial states when the Coulomb potential is not considered. Our work sheds some light on the ionization-time information of electrons from different magnetic quantum states.
Keywords:  strong-field ionization      Wigner-distribution-like      ionization instant  
Received:  29 March 2024      Revised:  05 June 2024      Accepted manuscript online:  15 June 2024
PACS:  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  33.80.Wz (Other multiphoton processes)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: We thank W. Quan for helpful discussion. Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 12274300 and 12074261)
Corresponding Authors:  Li Guo, Min Zhang, Jing Chen     E-mail:  guoli@shnu.edu.cn;zhangminzm@shnu.edu.cn;chenjing@ustc.edu.cn

Cite this article: 

Jingyang Xu(徐菁阳), Li Guo(郭丽), Xin Qi(齐昕), Ronghua Lu(陆荣华), Min Zhang(张敏), Jingtao Zhang(张敬涛), and Jing Chen(陈京) Time-energy distribution of photoelectron from atomic states with different magnetic quantum numbers in elliptically polarized laser fields 2024 Chin. Phys. B 33 093301

[1] Reiss H R 1980 Phys. Rev. A 22 1786
[2] Herath T, Yan L, Lee S K and Li W 2012 Phys. Rev. Lett. 109 043004
[3] Gajda M, Piraux B and Rzazewski K 1994 Phys. Rev. A 50 2528
[4] Barth I and Smirnova O 2011 Phys. Rev. A 84 063415
[5] Eckart S, Kunitski M, Richter M, Hartung A, Rist J, Trinter F, Fehre K, Schlott N, Henrichs K, Schmidt L P H, Jahnke T, Scöffler M, Liu K L, Barth I, Kaushal J, Morales F, Ivanov M, Smirnova O and Dörner R 2018 Nat. Phys. 14 701
[6] Li Y, Lan P F, Xie H, He M R, Zhu X S, Zhang Q B and Lu P X 2015 Opt. Express 23 028801
[7] Barth I and Lein M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204016
[8] Beiser S, Klaiber M and Kiyan I Y 2004 Phys. Rev. A 70 011402
[9] Barth I and Smirnova O 2013 Phys. Rev. A 87 065401
[10] Rey H F and van der Hart H W 2014 Phys. Rev. A 90 033402
[11] Patchkovskii S, Vrakking M J J, Villeneuve D M and Niikura H 2020 J. Phys. B: At. Mol. Opt. Phys. 53 134002
[12] Wang R R, Ma M Y, Wen L C, Guan Z, Yang Z Q, Jiao Z H, Wang G L and Zhao S F 2023 J. Opt. Soc. Am. B 40 1749
[13] Liu K, Ni H C, Renziehausen K, Rost J M and Barth I 2018 Phys. Rev. Lett. 121 203201
[14] Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M and Smirnova O 2015 Nat. Phys. 11 503
[15] Walker S, Kolanz L, Venzke J and Becker A 2021 Phys. Rev. Research 3 043051
[16] Walker S, Kolanz L, Venzke J and Becker A 2021 Phys. Rev. A 103 L061101
[17] Barth I and Smirnova O 2013 Phys. Rev. A 88 013401
[18] Barth I and Smirnova O 2013 Phys. Rev. A 87 013433
[19] Luo S Q, Li M, Xie W H, Liu K, Feng Y D, Du B J, Zhou Y M and Lu P X 2019 Phys. Rev. A 99 053422
[20] Ivanov I A 2016 Phys. Rev. A 93 053403
[21] Yuan M H and Bian X B 2015 Phys. Rev. A 101 013412
[22] Lin Z Y, Lin B Q and Chen Z X 2018 Acta Optica Sinica 38(6) 0602001
[23] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Diiörner R, Muller H G, Biiüttiker M and Keller U 2008 Science 322 1525
[24] Han M, Ge P P, Wang J G, Guo Z N, Fang Y Q, Ma X Y, Yu X Y, Deng Y K, Wörner H J, Gong Q H and Liu Y Q 2021 Nat. Photon. 15 765
[25] Yu M, Liu K, Li M, Yan J Q, Cao C P, Tan J, Liang J T, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2022 Light: Sci. Appl. 11 215
[26] Guo L, Zhao M, Quan W, Liu X J and Chen J 2023 Optica 10 1316
[27] Liu M M, Shao Y, Han M, Ge P P, Deng Y, Wu C Y, Gong Q H and Liu Y Q 2018 Phys. Rev. Lett. 120 043201
[28] Trabert D, Hartung A, Eckart S, Trinter F, Kalinin A, Schöffler M, Schmidt L Ph H, Jahnke T, Kunitski M and Dörner R 2018 Phys. Rev. Lett. 120 043202
[29] Wen L C, Jing W Q, Sun C P, Gao X H, Jiao Z H, Wang G L, Chen J H and Zhao S F 2023 J. Phys. B: At. Mol. Opt. Phys. 56 125601
[30] Xu S L, Zhang Q B, Fu X L, Huang X, Han X, Li M, Cao W and Lu P X 2020 Phys. Rev. A 102 063128
[31] Serebryannikov E E and Zheltikov A M 2016 Phys. Rev. Lett. 116 123901
[32] Guo L, Han S S and Chen J 2010 Opt. Express 18 1240
[33] Guo L, Han S S and Chen J 2012 Phys. Rev. A 86 053409
[34] Guo L, Chen S, Hu S L, Lu R H, Han S S, Zhang J T and Chen J 2022 J. Phys. B: At. Mol. Opt. Phys. 55 225401
[35] Radzig A A and Smirnov B M 1985 Reference Data on Atoms, Molecules and Ions
[36] Figueira de Morisson Faria C, Schomerus H and Becker W 2002 Phys. Rev. A 66 043413
[1] Attosecond ionization time delays in strong-field physics
Yongzhe Ma(马永哲), Hongcheng Ni(倪宏程), and Jian Wu(吴健). Chin. Phys. B, 2024, 33(1): 013201.
[2] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[3] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[4] Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization
Mingrui He(何明睿), Yang Fan(樊洋), Yueming Zhou(周月明), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(12): 123202.
[5] Imprint of transient electron localization in H2+ using circularly-polarized laser pulse
Jianghua Luo(罗江华), Jun Li(李军), and Huafeng Zhang(张华峰). Chin. Phys. B, 2020, 29(12): 123201.
[6] Bohmian trajectory perspective on strong field atomic processes
Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 013205.
[7] Coulomb exploded directional double ionization of N2O molecules in multicycle femtosecond laser pulses
Junyang Ma(马俊杨), Kang Lin(林康), Qinying Ji(季琴颖), Wenbin Zhang(张文斌), Hanxiao Li(李韩笑), Fenghao Sun(孙烽豪), Junjie Qiang(强俊杰), Peifen Lu(陆培芬), Hui Li(李辉), Xiaochun Gong(宫晓春), Jian Wu(吴健). Chin. Phys. B, 2019, 28(9): 093301.
[8] Backward rescattered photoelectron holography in strong-field ionization
Fujun Chen(陈富军), Ruxian Yao(姚汝贤), Jianghua Luo(罗江华), Changqing Wang(王长清). Chin. Phys. B, 2018, 27(10): 103202.
No Suggested Reading articles found!