|
|
Imaging a force field via an optically levitated nanoparticle array |
Bihu Lv(吕碧沪)1, Jiandong Zhang(张建东)2, and Chuang Li(李闯)1,† |
1 Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China; 2 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China |
|
|
Abstract Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing. We propose a force-sensing protocol utilizing an optically levitated nanoparticle array. In our scheme, $N$ nanoparticles are trapped in an optical cavity using holographic optical tweezers. An external laser drives the cavity, exciting $N$ cavity modes interacting simultaneously with the $N$ nanoparticles. The optomechanical interaction encodes the information of the force acting on each nanoparticle onto the intracavity photons, which can be detected directly at the output ports of the cavity. Consequently, our protocol enables real-time imaging of a force field.
|
Received: 08 July 2024
Revised: 02 August 2024
Accepted manuscript online: 06 August 2024
|
PACS:
|
07.10.Cm
|
(Micromechanical devices and systems)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: We thank Tongtong Zhu for the useful discussion. This work is supported by the Natural Science Foundation of Zhejiang Province (Grant No. LQ22A040010) and the National Natural Science Foundation of China (Grant Nos. 12304545 and 12204434). |
Corresponding Authors:
Chuang Li
E-mail: chuangli_hit@outlook.com
|
Cite this article:
Bihu Lv(吕碧沪), Jiandong Zhang(张建东), and Chuang Li(李闯) Imaging a force field via an optically levitated nanoparticle array 2024 Chin. Phys. B 33 090702
|
[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [2] Nie W, Lan Y, Li Y and Zhu S 2014 Sci. China Phys. Mech. Astron. 57 2276 [3] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213 [4] Mahajan S, Aggarwal N, Bhattacherjee A B, et al. 2013 Chin. Phys. B 23 020315 [5] Liu Y l, Wang C, Zhang J and Liu Y X 2018 Chin. Phys. B 27 024204 [6] Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2019 Chin. Phys. B 28 014202 [7] Zhang S, Li T, Duan Q H, Zhang J Q and Bao W S 2021 Chin. Phys. B 30 023701 [8] Liu Y Y, Zhang Z M, Liu J H, Wang J D and Yu Y F 2022 Chin. Phys. B 31 094203 [9] Ashkin A and Dziedzic J 1971 Appl. Phys. Lett. 19 283 [10] Ashkin A and Dziedzic J 1976 Appl. Phys. Lett. 28 333 [11] Ashkin A and Dziedzic J 1977 Appl. Phys. Lett. 30 202 [12] Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769 [13] Ashkin A and Dziedzic J M 1987 Science 235 1517 [14] Fazal F M and Block S M 2011 Nat. Photon. 5 318 [15] Dholakia K and Čižmár T 2011 Nat. Photon. 5 335 [16] Padgett M and Bowman R 2011 Nat. Photon. 5 343 [17] Maragò O M, Jones P H, Gucciardi P G, Volpe G and Ferrari A C 2013 Nat. Nanotechnol. 8 807 [18] Ranjit G, Atherton D P, Stutz J H, Cunningham M and Geraci A A 2015 Phys. Rev. A 91 051805 [19] Ranjit G, Cunningham M, Casey K and Geraci A A 2016 Phys. Rev. A 93 053801 [20] Hempston D, Vovrosh J, Toroš M, Winstone G, Rashid M and Ulbricht H 2017 Appl. Phys. Lett. 111 133111 [21] Hebestreit E, Frimmer M, Reimann R and Novotny L 2018 Phys. Rev. Lett. 121 063602 [22] Blakemore C P, Rider A D, Roy S, Wang Q, Kawasaki A and Gratta G 2019 Phys. Rev. A 99 023816 [23] Li T, Kheifets S, Medellin D and Raizen M G 2010 Science 328 1673 [24] Li T and Raizen M G 2013 Annalen der Physik 525 281 [25] Gieseler J, Novotny L and Quidant R 2013 Nat. Phys. 9 806 [26] Gieseler J, Quidant R, Dellago C and Novotny L 2014 Nat. Nanotechnol. 9 358 [27] Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett. 116 243601 [28] Rondin L, Gieseler J, Ricci F, Quidant R, Dellago C and Novotny L 2017 Nat. Nanotechnol. 12 1130 [29] Arvanitaki A and Geraci A A 2013 Phys. Rev. Lett. 110 071105 [30] Monteiro F, Afek G, Carney D, Krnjaic G, Wang J and Moore D C 2020 Phys. Rev. Lett. 125 181102 [31] Moore D C, Rider A D and Gratta G 2014 Phys. Rev. Lett. 113 251801 [32] Rider A D, Moore D C, Blakemore C P, Louis M, Lu M and Gratta G 2016 Phys. Rev. Lett. 117 101101 [33] Carney D, Krnjaic G, Moore D C, Regal C A, Afek G, Bhave S, Brubaker B, Corbitt T, Cripe J, Crisosto N, et al. 2021 Quantum Science and Technology 6 024002 [34] Tebbenjohanns F, Frimmer M, Militaru A, Jain V and Novotny L 2019 Phys. Rev. Lett. 122 223601 [35] Tebbenjohanns F, Frimmer M, Jain V, Windey D and Novotny L 2020 Phys. Rev. Lett. 124 013603 [36] Monteiro F, Ghosh S, Fine A G and Moore D C 2017 Phys. Rev. A 96 063841 [37] Rider A D, Blakemore C P, Gratta G and Moore D C 2018 Phys. Rev. A 97 013842 [38] Monteiro F, Li W, Afek G, Li C l, Mossman M and Moore D C 2020 Phys. Rev. A 101 053835 [39] Delić U, Reisenbauer M, Dare K, Grass D, Vuletić V, Kiesel N and Aspelmeyer M 2020 Science 367 892 [40] Magrini L, Rosenzweig P, Bach C, Deutschmann-Olek A, Hofer S G, Hong S, Kiesel N, Kugi A and Aspelmeyer M 2021 Nature 595 373 [41] Tebbenjohanns F, Mattana M L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378 [42] Romero-Isart O, Juan M L, Quidant R and Cirac J I 2010 New J. Phys. 12 033015 [43] Romero-Isart O, Pflanzer A C, Blaser F, Kaltenbaek R, Kiesel N, Aspelmeyer M and Cirac J I 2011 Phys. Rev. Lett. 107 020405 [44] Hüpfl J, Bachelard N, Kaczvinszki M, Horodynski M, Kühmayer M and Rotter S 2023 Phys. Rev. Lett. 130 083203 [45] Hüpfl J, Bachelard N, Kaczvinszki M, Horodynski M, Kühmayer M and Rotter S 2023 Phys. Rev. A 107 023112 [46] Rieser J, Ciampini M A, Rudolph H, Kiesel N, Hornberger K, Stickler B A, Aspelmeyer M and Delić U 2022 Science 377 987 [47] Vijayan J, Piotrowski J, Gonzalez-Ballestero C, Weber K, Romero-Isart O and Novotny L 2024 Nat. Phys. 20 859 [48] Rudolph H, Hornberger K and Stickler B A 2020 Phys. Rev. A 101 011804 [49] Brandao I, Tandeitnik D and Guerreiro T 2021 Quantum Science and Technology 6 045013 [50] Li C, Li Y, Hu H and Dong Y 2022 Sci. China Phys. Mech. Astron. 65 240311 [51] Rudolph H, Delić U, Aspelmeyer M, Hornberger K and Stickler B A 2022 Phys. Rev. Lett. 129 193602 [52] Li Y, Li C, Zhang J, Dong Y and Hu H 2023 Phys. Rev. Appl. 20 024018 [53] Gieseler J, Gomez-Solano J R, Magazzù A, Castillo I P, García L P, Gironella-Torrent M, Viader-Godoy X, Ritort F, Pesce G, Arzola A V, et al. 2021 Advances in Optics and Photonics 13 74 [54] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804 [55] Genes C, Vitali D and Tombesi P 2008 New J. Phys. 10 095009 [56] Gopalakrishnan S, Lev B L and Goldbart P M 2009 Nat. Phys. 5 845 [57] Wickenbrock A, Hemmerling M, Robb G R M, Emary C and Renzoni F 2013 Phys. Rev. A 87 043817 [58] Kollár A J, Papageorge A T, Vaidya V D, Guo Y, Keeling J and Lev B L 2017 Nat. Commun. 8 14386 [59] Vaidya V D, Guo Y, Kroeze R M, Ballantine K E, Kollár A J, Keeling J and Lev B L 2018 Phys. Rev. X 8 011002 [60] Guo Y, Kroeze R M, Vaidya V D, Keeling J and Lev B L 2019 Phys. Rev. Lett. 122 193601 [61] Yan J, Yu X, Han Z V, Li T and Zhang J 2023 Photonics Research 11 600 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|