Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090702    DOI: 10.1088/1674-1056/ad6b86
RAPID COMMUNICATION Prev   Next  

Imaging a force field via an optically levitated nanoparticle array

Bihu Lv(吕碧沪)1, Jiandong Zhang(张建东)2, and Chuang Li(李闯)1,†
1 Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China;
2 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
Abstract  Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing. We propose a force-sensing protocol utilizing an optically levitated nanoparticle array. In our scheme, N nanoparticles are trapped in an optical cavity using holographic optical tweezers. An external laser drives the cavity, exciting N cavity modes interacting simultaneously with the N nanoparticles. The optomechanical interaction encodes the information of the force acting on each nanoparticle onto the intracavity photons, which can be detected directly at the output ports of the cavity. Consequently, our protocol enables real-time imaging of a force field.
Keywords:  optomechanics      levitated nanoparticles      force field detection  
Received:  08 July 2024      Revised:  02 August 2024      Accepted manuscript online: 
PACS:  07.10.Cm (Micromechanical devices and systems)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  03.67.-a (Quantum information)  
Fund: This work is supported by the Natural Science Foundation of Zhejiang Province (Grant No. LQ22A040010) and the National Natural Science Foundation of China (Grant Nos. 12304545 and 12204434).
Corresponding Authors:  Chuang Li     E-mail:  chuangli_hit@outlook.com

Cite this article: 

Bihu Lv(吕碧沪), Jiandong Zhang(张建东), and Chuang Li(李闯) Imaging a force field via an optically levitated nanoparticle array 2024 Chin. Phys. B 33 090702

[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Nie W, Lan Y, Li Y and Zhu S 2014 Sci. China Phys. Mech. Astron. 57 2276
[3] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[4] Mahajan S, Aggarwal N, Bhattacherjee A B, et al. 2013 Chin. Phys. B 23 020315
[5] Liu Y l, Wang C, Zhang J and Liu Y X 2018 Chin. Phys. B 27 024204
[6] Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2019 Chin. Phys. B 28 014202
[7] Zhang S, Li T, Duan Q H, Zhang J Q and Bao W S 2021 Chin. Phys. B 30 023701
[8] Liu Y Y, Zhang Z M, Liu J H, Wang J D and Yu Y F 2022 Chin. Phys. B 31 094203
[9] Ashkin A and Dziedzic J 1971 Appl. Phys. Lett. 19 283
[10] Ashkin A and Dziedzic J 1976 Appl. Phys. Lett. 28 333
[11] Ashkin A and Dziedzic J 1977 Appl. Phys. Lett. 30 202
[12] Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769
[13] Ashkin A and Dziedzic J M 1987 Science 235 1517
[14] Fazal F M and Block S M 2011 Nat. Photon. 5 318
[15] Dholakia K and Čižmár T 2011 Nat. Photon. 5 335
[16] Padgett M and Bowman R 2011 Nat. Photon. 5 343
[17] Maragò O M, Jones P H, Gucciardi P G, Volpe G and Ferrari A C 2013 Nat. Nanotechnol. 8 807
[18] Ranjit G, Atherton D P, Stutz J H, Cunningham M and Geraci A A 2015 Phys. Rev. A 91 051805
[19] Ranjit G, Cunningham M, Casey K and Geraci A A 2016 Phys. Rev. A 93 053801
[20] Hempston D, Vovrosh J, Toroš M, Winstone G, Rashid M and Ulbricht H 2017 Appl. Phys. Lett. 111 133111
[21] Hebestreit E, Frimmer M, Reimann R and Novotny L 2018 Phys. Rev. Lett. 121 063602
[22] Blakemore C P, Rider A D, Roy S, Wang Q, Kawasaki A and Gratta G 2019 Phys. Rev. A 99 023816
[23] Li T, Kheifets S, Medellin D and Raizen M G 2010 Science 328 1673
[24] Li T and Raizen M G 2013 Annalen der Physik 525 281
[25] Gieseler J, Novotny L and Quidant R 2013 Nat. Phys. 9 806
[26] Gieseler J, Quidant R, Dellago C and Novotny L 2014 Nat. Nanotechnol. 9 358
[27] Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett. 116 243601
[28] Rondin L, Gieseler J, Ricci F, Quidant R, Dellago C and Novotny L 2017 Nat. Nanotechnol. 12 1130
[29] Arvanitaki A and Geraci A A 2013 Phys. Rev. Lett. 110 071105
[30] Monteiro F, Afek G, Carney D, Krnjaic G, Wang J and Moore D C 2020 Phys. Rev. Lett. 125 181102
[31] Moore D C, Rider A D and Gratta G 2014 Phys. Rev. Lett. 113 251801
[32] Rider A D, Moore D C, Blakemore C P, Louis M, Lu M and Gratta G 2016 Phys. Rev. Lett. 117 101101
[33] Carney D, Krnjaic G, Moore D C, Regal C A, Afek G, Bhave S, Brubaker B, Corbitt T, Cripe J, Crisosto N, et al. 2021 Quantum Science and Technology 6 024002
[34] Tebbenjohanns F, Frimmer M, Militaru A, Jain V and Novotny L 2019 Phys. Rev. Lett. 122 223601
[35] Tebbenjohanns F, Frimmer M, Jain V, Windey D and Novotny L 2020 Phys. Rev. Lett. 124 013603
[36] Monteiro F, Ghosh S, Fine A G and Moore D C 2017 Phys. Rev. A 96 063841
[37] Rider A D, Blakemore C P, Gratta G and Moore D C 2018 Phys. Rev. A 97 013842
[38] Monteiro F, Li W, Afek G, Li C l, Mossman M and Moore D C 2020 Phys. Rev. A 101 053835
[39] Delić U, Reisenbauer M, Dare K, Grass D, Vuletić V, Kiesel N and Aspelmeyer M 2020 Science 367 892
[40] Magrini L, Rosenzweig P, Bach C, Deutschmann-Olek A, Hofer S G, Hong S, Kiesel N, Kugi A and Aspelmeyer M 2021 Nature 595 373
[41] Tebbenjohanns F, Mattana M L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378
[42] Romero-Isart O, Juan M L, Quidant R and Cirac J I 2010 New J. Phys. 12 033015
[43] Romero-Isart O, Pflanzer A C, Blaser F, Kaltenbaek R, Kiesel N, Aspelmeyer M and Cirac J I 2011 Phys. Rev. Lett. 107 020405
[44] Hüpfl J, Bachelard N, Kaczvinszki M, Horodynski M, Kühmayer M and Rotter S 2023 Phys. Rev. Lett. 130 083203
[45] Hüpfl J, Bachelard N, Kaczvinszki M, Horodynski M, Kühmayer M and Rotter S 2023 Phys. Rev. A 107 023112
[46] Rieser J, Ciampini M A, Rudolph H, Kiesel N, Hornberger K, Stickler B A, Aspelmeyer M and Delić U 2022 Science 377 987
[47] Vijayan J, Piotrowski J, Gonzalez-Ballestero C, Weber K, Romero-Isart O and Novotny L 2024 Nat. Phys. 20 859
[48] Rudolph H, Hornberger K and Stickler B A 2020 Phys. Rev. A 101 011804
[49] Brandão I, Tandeitnik D and Guerreiro T 2021 Quantum Science and Technology 6 045013
[50] Li C, Li Y, Hu H and Dong Y 2022 Sci. China Phys. Mech. Astron. 65 240311
[51] Rudolph H, Delić U, Aspelmeyer M, Hornberger K and Stickler B A 2022 Phys. Rev. Lett. 129 193602
[52] Li Y, Li C, Zhang J, Dong Y and Hu H 2023 Phys. Rev. Appl. 20 024018
[53] Gieseler J, Gomez-Solano J R, Magazzù A, Castillo I P, García L P, Gironella-Torrent M, Viader-Godoy X, Ritort F, Pesce G, Arzola A V, et al. 2021 Advances in Optics and Photonics 13 74
[54] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[55] Genes C, Vitali D and Tombesi P 2008 New J. Phys. 10 095009
[56] Gopalakrishnan S, Lev B L and Goldbart P M 2009 Nat. Phys. 5 845
[57] Wickenbrock A, Hemmerling M, Robb G R M, Emary C and Renzoni F 2013 Phys. Rev. A 87 043817
[58] Kollár A J, Papageorge A T, Vaidya V D, Guo Y, Keeling J and Lev B L 2017 Nat. Commun. 8 14386
[59] Vaidya V D, Guo Y, Kroeze R M, Ballantine K E, Kollár A J, Keeling J and Lev B L 2018 Phys. Rev. X 8 011002
[60] Guo Y, Kroeze R M, Vaidya V D, Keeling J and Lev B L 2019 Phys. Rev. Lett. 122 193601
[61] Yan J, Yu X, Han Z V, Li T and Zhang J 2023 Photonics Research 11 600
[1] Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
Y. Lahlou, B. Maroufi, and M. Daoud. Chin. Phys. B, 2024, 33(5): 050303.
[2] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东), Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[3] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[4] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[5] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[6] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[7] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[8] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[9] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[10] Three-mode optomechanical system for angular velocity detection
Kai Li(李凯), Sankar Davuluri, Yong Li(李勇). Chin. Phys. B, 2018, 27(8): 084203.
[11] Controlling the entanglement of mechanical oscillators in composite optomechanical system
Jun Zhang(张俊), Qing-Xia Mu(穆青霞), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2018, 27(4): 040304.
[12] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[13] Electromagnetically induced transparency in a three-mode optomechanical system
Yan Xiao-Bo (严晓波), Gu Kai-Hui (谷开慧), Fu Chang-Bao (付长宝), Cui Cui-Li (崔淬砺), Wu Jin-Hui (吴金辉). Chin. Phys. B, 2014, 23(11): 114201.
[14] Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever
Ding Li-Ping (丁丽萍), Mao Tian-Hua (毛添华), Fu Hao (付号), Cao Geng-Yu (曹更玉). Chin. Phys. B, 2014, 23(10): 107801.
[15] Enhancing stationary optomechanical entanglement with Kerr medium
Zhang Dan (张丹), Zhang Xiao-Ping (张小平), Zheng Qiang (郑强). Chin. Phys. B, 2013, 22(6): 064206.
No Suggested Reading articles found!